1
|
Walter V, Schmatko T, Muller P, Schroder AP, MacEwan SR, Chilkoti A, Marques CM. Negative lipid membranes enhance the adsorption of TAT-decorated elastin-like polypeptide micelles. Biophys J 2024; 123:901-908. [PMID: 38449310 PMCID: PMC10995422 DOI: 10.1016/j.bpj.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
A cell-penetrating peptide (CPP) is a short amino-acid sequence capable of efficiently translocating across the cellular membrane of mammalian cells. However, the potential of CPPs as a delivery vector is hampered by the strong reduction of its translocation efficiency when it bears an attached molecular cargo. To overcome this problem, we used previously developed diblock copolymers of elastin-like polypeptides (ELPBCs), which we end functionalized with TAT (transactivator of transcription), an archetypal CPP built from a positively charged amino acid sequence of the HIV-1 virus. These ELPBCs self-assemble into micelles at a specific temperature and present the TAT peptide on their corona. These micelles can recover the lost membrane affinity of TAT and can trigger interactions with the membrane despite the presence of a molecular cargo. Herein, we study the influence of membrane surface charge on the adsorption of TAT-functionalized ELP micelles onto giant unilamellar vesicles (GUVs). We show that the TAT-ELPBC micelles show an increased binding constant toward negatively charged membranes compared to neutral membranes, but no translocation is observed. The affinity of the TAT-ELPBC micelles for the GUVs displays a stepwise dependence on the lipid charge of the GUV, which, to our knowledge, has not been reported previously for interactions between peptides and lipid membranes. By unveiling the key steps controlling the interaction of an archetypal CPP with lipid membranes, through regulation of the charge of the lipid bilayer, our results pave the way for a better design of delivery vectors based on CPPs.
Collapse
Affiliation(s)
- Vivien Walter
- Institut Charles Sadron, CNRS UPR22 & Université de Strasbourg, Strasbourg, France
| | - Tatiana Schmatko
- Institut Charles Sadron, CNRS UPR22 & Université de Strasbourg, Strasbourg, France.
| | - Pierre Muller
- Institut Charles Sadron, CNRS UPR22 & Université de Strasbourg, Strasbourg, France
| | | | - Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Carlos M Marques
- University of Lyon, ENS-Lyon, CNRS UMR 5182, Chem. Lab, Lyon, France.
| |
Collapse
|
2
|
Sun S, Xia Y, Liu J, Dou Y, Yang K, Yuan B, Kang Z. Real-time monitoring the interfacial dynamic processes at model cell membranes: Taking cell penetrating peptide TAT as an example. J Colloid Interface Sci 2021; 609:707-717. [PMID: 34839914 DOI: 10.1016/j.jcis.2021.11.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/16/2022]
Abstract
A real-time and molecule-level monitoring of the interfacial dynamic interactions between molecules and a cell membrane is of vital importance. Herein, taking TAT, one of the most representative cell penetrating peptides, as an example, a photo-voltage transient technique and a dynamic giant bistratal vesicle (GBV) leakage method were combined with the traditional giant unilamellar vesicle (GUV) leakage assays, to provide a molecule-level understanding of the dynamic membrane interaction process performed in a low ionic strength and neutral pH condition. The photo-voltage test based on supported phospholipid bilayers showed a quick disturbance (<1 min) followed by a continuous reconstruction of the membrane by peptides, leading to a slight destruction (at TAT concentrations lower than 1 μg mL-1, i.e., 0.64 μM) or strong damage (e.g. at 10 μg mL-1, i.e., 6.4 μM) of the bilayer structure. The GUV/GBV leakage assays further demonstrated the TAT-induced membrane deformation and transmembrane diffusion of dyes, which occurred in an immediate, linear, and TAT-concentration dependent manner. Moreover, the flux of dye across the substrate-immobilized membranes was approximately three times of that across the substrate-free ones. This work gives information on time and molecular mechanism of the TAT-membrane interactions, demonstrates the different permeabilizing effects of TAT on immobilized and free membranes. Overall, it provides useful strategies to investigate the nano-bio interfacial interactions in a simple, global and real-time way.
Collapse
Affiliation(s)
- Shuqing Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yu Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Jiaojiao Liu
- College of Physics and Electronic Engineering & Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Yujiang Dou
- School of Electronic and Information Engineer, Soochow University, Suzhou 215006, Jiangsu, China; Suzhou Weimu Intelligent System Co. Ltd., Suzhou 215163, Jiangsu, China.
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Institute of Advanced Materials, Northeast Normal University, 5268 Renmin Street, Changchun 130024, Jilin, China.
| |
Collapse
|
3
|
Souza SO, Lira RB, Cunha CRA, Santos BS, Fontes A, Pereira G. Methods for Intracellular Delivery of Quantum Dots. Top Curr Chem (Cham) 2021; 379:1. [PMID: 33398442 DOI: 10.1007/s41061-020-00313-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Quantum dots (QDs) have attracted considerable attention as fluorescent probes for life sciences. The advantages of using QDs in fluorescence-based studies include high brilliance, a narrow emission band allowing multicolor labeling, a chemically active surface for conjugation, and especially, high photostability. Despite these advantageous features, the size of the QDs prevents their free transport across the plasma membrane, limiting their use for specific labeling of intracellular structures. Over the years, various methods have been evaluated to overcome this issue to explore the full potential of the QDs. Thus, in this review, we focused our attention on physical and biochemical QD delivery methods-electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes-discussing the benefits and drawbacks of each strategy, as well as presenting recent studies in the field. We hope that this review can be a useful reference source for researches that already work or intend to work in this area. Strategies for the intracellular delivery of quantum dots discussed in this review (electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes).
Collapse
Affiliation(s)
- Sueden O Souza
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, CB, UFPE, Av. Prof. Moraes Rego, S/N, Recife, PE, 50670-901, Brazil
| | - Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Cássia R A Cunha
- Laboratório Federal de Defesa Agropecuária em Pernambuco, Recife, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, CB, UFPE, Av. Prof. Moraes Rego, S/N, Recife, PE, 50670-901, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, CCEN, UFPE, Av. Jornalista Anibal Fernandes, S/N, Recife, 50740-560, PE, Brazil.
| |
Collapse
|
4
|
Wang Y, Li S, Zhang P, Bai H, Feng L, Lv F, Liu L, Wang S. Photothermal-Responsive Conjugated Polymer Nanoparticles for Remote Control of Gene Expression in Living Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705418. [PMID: 29327394 DOI: 10.1002/adma.201705418] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/02/2017] [Indexed: 06/07/2023]
Abstract
Remote control and noninvasive manipulation of cellular bioprocess has received intensive attention as a powerful technology to control cell functions. Here, a strategy is developed to remotely control intracellular gene expression with high spatial and temporal resolutions by using photothermal-responsive conjugated polymer nanoparticles (CPNs) as the transducer under near-infrared light irradiation. After being modified with positive charged peptide, the CPNs with superior photothermal conversion capacity could effectively coat on the surface of living cells and generate localized heat to trigger target gene expression. The heat-inducible heat shock protein-70 promoter starts transcription of downstream EGFP gene in response to heat shock, thus producing green fluorescent protein in the living cells. The combination of heat-inducible gene promoter and photothermal-responsive CPNs provides a method for the development of thermogenetics.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shengliang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Pengbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|