1
|
Kammarchedu V, Asgharian H, Zhou K, Soltan Khamsi P, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. NANOSCALE 2024; 16:12857-12882. [PMID: 38888429 PMCID: PMC11238565 DOI: 10.1039/d3nr06137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graphene, with its outstanding mechanical, electrical, and biocompatible properties, stands out as an emerging nanomaterial for healthcare applications, especially in building electroanalytical biodevices. With the rising prevalence of chronic diseases and infectious diseases, such as the COVID-19 pandemic, the demand for point-of-care testing and remote patient monitoring has never been greater. Owing to their portability, ease of manufacturing, scalability, and rapid and sensitive response, electroanalytical devices excel in these settings for improved healthcare accessibility, especially in resource-limited settings. The development of different synthesis methods yielding large-scale graphene and its derivatives with controllable properties, compatible with device manufacturing - from lithography to various printing methods - and tunable electrical, chemical, and electrochemical properties make it an attractive candidate for electroanalytical devices. This review article sheds light on how graphene-based devices can be transformative in addressing pressing healthcare needs, ranging from the fundamental understanding of biology in in vivo and ex vivo studies to early disease detection and management using in vitro assays and wearable devices. In particular, the article provides a special focus on (i) synthesis and functionalization techniques, emphasizing their suitability for scalable integration into devices, (ii) various transduction methods to design diverse electroanalytical device architectures, (iii) a myriad of applications using devices based on graphene, its derivatives, and hybrids with other nanomaterials, and (iv) emerging technologies at the intersection of device engineering and advanced data analytics. Finally, some of the major hurdles that graphene biodevices face for translation into clinical applications are discussed.
Collapse
Affiliation(s)
- Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Heshmat Asgharian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Wulandari R, Ardiansyah A, Setiyanto H, Saraswaty V. A novel non-enzymatic electrochemical uric acid sensing method based on nanohydroxyapatite from eggshell biowaste immobilized on a zinc oxide nanoparticle modified activated carbon electrode (Hap-Esb/ZnONPs/ACE). RSC Adv 2023; 13:12654-12662. [PMID: 37101531 PMCID: PMC10123379 DOI: 10.1039/d3ra01214j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Hydroxyapatite-derived eggshell biowaste (Hap-Esb) has been fabricated and developed for the electrochemical detection of uric acid (UA). The physicochemical characteristics of the Hap-Esb and modified electrodes were evaluated using a scanning electron microscope and X-ray Diffraction analysis. Utilized as UA sensors, the electrochemical behavior of modified electrodes (Hap-Esb/ZnONPs/ACE) was assessed using cyclic voltammetry (CV). The superior peak current response observed for the oxidation of UA at Hap-Esb/ZnONPs/ACE, which was 13 times higher than that of the Hap-Esb/activated carbon electrode (Hap-Esb/ACE) is attributed to the simple immobilization of Hap-Esb on zinc oxide nanoparticle-modified ACE. The UA sensor exhibited a linear range at 0.01 to 1 μM, low detection limit (0.0086 μM), and excellent stability, which surpass the existing Hap-based electrodes reported in the literature. The facile UA sensor subsequently realized is also advantaged by its simplicity, repeatability, reproducibility, and low cost, applicable for real sample analysis (human urine sample).
Collapse
Affiliation(s)
- Retno Wulandari
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
- Chemical Engineering Department, Faculty of Engineering, Universitas Bhayangkara Jakarta Raya Jl. Harsono RM No. 67 Jakarta Indonesia
| | - Ardi Ardiansyah
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| | - Henry Setiyanto
- Analytical Chemistry Research Group, Institut Teknologi Bandung Bandung Indonesia
| | - Vienna Saraswaty
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| |
Collapse
|
3
|
Văduva M, Baibarac M, Cramariuc O. Functionalization of Graphene Derivatives with Conducting Polymers and Their Applications in Uric Acid Detection. Molecules 2022; 28:molecules28010135. [PMID: 36615329 PMCID: PMC9821842 DOI: 10.3390/molecules28010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In this article, we review recent progress concerning the development of sensorial platforms based on graphene derivatives and conducting polymers (CPs), alternatively deposited or co-deposited on the working electrode (usually a glassy carbon electrode; GCE) using a simple potentiostatic method (often cyclic voltammetry; CV), possibly followed by the deposition of metallic nanoparticles (NPs) on the electrode surface (ES). These materials have been successfully used to detect an extended range of biomolecules of clinical interest, such as uric acid (UA), dopamine (DA), ascorbic acid (AA), adenine, guanine, and others. The most common method is electrochemical synthesis. In the composites, which are often combined with metallic NPs, the interaction between the graphene derivatives-including graphene oxide (GO), reduced graphene oxide (RGO), or graphene quantum dots (GQDs)-and the CPs is usually governed by non-covalent functionalization through π-π interactions, hydrogen bonds, and van der Waals (VW) forces. The functionalization of GO, RGO, or GQDs with CPs has been shown to speed up electron transfer during the oxidation process, thus improving the electrochemical response of the resulting sensor. The oxidation mechanism behind the electrochemical response of the sensor seems to involve a partial charge transfer (CT) from the analytes to graphene derivatives, due to the overlapping of π orbitals.
Collapse
Affiliation(s)
- Mirela Văduva
- National Institute of Materials Physics, Atomistilor Street, No. 405 A, Ilfov, 077125 Magurele, Romania
- Correspondence:
| | - Mihaela Baibarac
- National Institute of Materials Physics, Atomistilor Street, No. 405 A, Ilfov, 077125 Magurele, Romania
| | - Oana Cramariuc
- IT Centre for Science and Technology, Av. Radu Beller Street, No. 25, 011702 Bucharest, Romania
| |
Collapse
|
4
|
Mayurkumar Revabhai P, Jung Park T, Kumar Kailasa S. One-step hydrothermal approach for synthesis of hydroxy functionalized boron nitride nanosheets for fluorescence detection of uric acid in biological samples. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Nashruddin SNA, Abdullah J, Mohammad Haniff MAS, Mat Zaid MH, Choon OP, Mohd Razip Wee MF. Label Free Glucose Electrochemical Biosensor Based on Poly(3,4-ethylenedioxy thiophene):Polystyrene Sulfonate/Titanium Carbide/Graphene Quantum Dots. BIOSENSORS 2021; 11:bios11080267. [PMID: 34436069 PMCID: PMC8393679 DOI: 10.3390/bios11080267] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 05/24/2023]
Abstract
The electrochemical biosensor devices based on enzymes for monitoring biochemical substances are still considered attractive. We investigated the immobilization of glucose oxidase (GOx) on a new composite nanomaterial poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS)/titanium carbide,(Ti3C2)/graphene quantum dots(GQD) modified screen-printed carbon electrode (SPCE) for glucose sensing. The characterization and electrochemical behavior of PEDOT:PSS/Ti3C2/GQD towards the electrocatalytic oxidation of GOx was analyzed by FTIR, XPS, SEM, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This composite nanomaterial was found to tend to increase the electrochemical behavior and led to a higher peak current of 100.17 µA compared to 82.01 µA and 95.04 µA for PEDOT:PSS and PEDOT:PSS/Ti3C2 alone. Moreover, the detection results demonstrated that the fabricated biosensor had a linear voltammetry response in the glucose concentration range 0-500 µM with a relatively sensitivity of 21.64 µAmM-1cm-2 and a detection limit of 65 µM (S/N = 3), with good stability and selectivity. This finding could be useful as applicable guidance for the modification screen printed carbon (SPCE) electrodes focused on composite PEDOT:PSS/Ti3C2/GQD for efficient detection using an enzyme-based biosensor.
Collapse
Affiliation(s)
- Siti Nur AshakirinMohd Nashruddin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhammad Aniq Shazni Mohammad Haniff
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Ooi Poh Choon
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Farhanulhakim Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| |
Collapse
|
6
|
Mazzara F, Patella B, Aiello G, O'Riordan A, Torino C, Vilasi A, Inguanta R. Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138652] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Chang AS, Tahira A, Chang F, Memon NN, Nafady A, Kasry A, Ibupoto ZH. Silky Co 3O 4 nanostructures for the selective and sensitive enzyme free sensing of uric acid. RSC Adv 2021; 11:5156-5162. [PMID: 35424461 PMCID: PMC8694662 DOI: 10.1039/d0ra10462k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, simple, new and functional silky nanostructures of Co3O4 are prepared by hydrothermal method. These nanostructures are successfully used for the enzyme free sensing of uric acid in 0.1 M phosphate buffer solution of pH 7.3. Physical characterization experiments were carried out to explore the morphology, composition and crystalline phase of the newly prepared Co3O4 nanostructures. Scanning electron microscopy (SEM) shows a silk like morphology and energy dispersive spectroscopy (EDS) revealed the presence of Co and O as the main elements. Powder X-ray diffraction (XRD) demonstrates a cubic crystallography with well resolved diffraction patterns. The electrochemical activity of these silky Co3O4 nanostructures was evaluated by cyclic voltammetry (CV) in a 0.1 M phosphate buffer solution at pH 7.3. The high purity and unique morphology of Co3O4 shows a highly sensitive and selective response towards the non-enzymatic sensing of uric acid. This uric acid sensor exhibits a linear range of 0.5 mM to 3.5 mM uric acid and a 0.1 mM limit of detection. The anti-interference capability of this uric acid sensor was monitored in the presence of common interfering species. Furthermore, electrochemical impedance spectroscopy confirms a low charge transfer resistance value of 5.11 K Ω cm2 for silky Co3O4 nanostructures which significantly supported the CV results. The proposed modified electrode is stable, selective and reproducible which confirms its possible practical use. Silky Co3O4 nanostructures can be of great importance for diverse electrochemical applications due to their excellent electrochemical activity and large surface area.
Collapse
Affiliation(s)
- Abdul Sattar Chang
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Fouzia Chang
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Nusrat Naeem Memon
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Amal Kasry
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE) Egypt
| | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro 76080 Sindh Pakistan
| |
Collapse
|
8
|
Badea M, di Modugno F, Floroian L, Tit DM, Restani P, Bungau S, Iovan C, Badea GE, Aleya L. Electrochemical strategies for gallic acid detection: Potential for application in clinical, food or environmental analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:129-140. [PMID: 30954811 DOI: 10.1016/j.scitotenv.2019.03.404] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/10/2019] [Accepted: 03/25/2019] [Indexed: 04/15/2023]
Abstract
Polyphenols are important to human health thus making it interesting and necessary to identify and assess methods for their detection. Gallic acid (GA) is a well-known antioxidant compound, found in tea leaves, various fruits, fruit seeds and in fruit-derived foods and beverages. In this study, to electrochemically detect this compound and assess the potential for GA detection, different analytical conditions at pH values of 5.8, 7 and 8 were tried. Two types of device were used for GA detection: (1) Lazar ORP-146C reduction-oxidation microsensors, coupled with a Jenco device, for estimation of antioxidant capacities of different electroactive media, and (2) screen-printed carbon sensors coupled with a mobile PalmSens device using differential pulse voltammetry (qualitative and quantitative GA determination). These proposed methods were validated by analysing some real samples: wine, green tea, apple juice and serum fortified with GA. Detection was evaluated in terms of specific calibration curves, with low limit of detection (LOD) and limit of quantification (LOQ), low response time, and high sensitivities. The analytical characteristics obtained recommend these methods to be tested on more other types of real samples. Our proposed methods, used in the established conditions of pH, may have further application in other clinical, food or environmental samples analyses in which the results of total antioxidants contents are usually expressed in GA equivalents.
Collapse
Affiliation(s)
- Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brasov 500039, Romania.
| | - Federico di Modugno
- Department of Pharmacological and Biomolecular Sciences, Faculty of Pharmacology Science, Universita Degli Studi di Milano, Milan 20133, Italy.
| | - Laura Floroian
- Department of Automation and Information Technology, Faculty of Electrical Engineering and Computer Sciences, Transylvania University of Brasov, Brasov 500039, Romania.
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Patrizia Restani
- Department of Pharmacological and Biomolecular Sciences, Faculty of Pharmacology Science, Universita Degli Studi di Milano, Milan 20133, Italy.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Ciprian Iovan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania.
| | - Gabriela Elena Badea
- Department of Chemistry, Faculty of Sciences, University of Oradea, Oradea 410087, Romania.
| | - Lotfi Aleya
- Laboratoire Chrono-environnement, Université de Franche-Comté, Besançon, France.
| |
Collapse
|
9
|
3D porous structured polyaniline/reduced graphene oxide/copper oxide decorated electrode for high performance nonenzymatic glucose detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Nitrogen-doped carbon nanodots prepared from polyethylenimine for fluorometric determination of salivary uric acid. Mikrochim Acta 2019; 186:166. [DOI: 10.1007/s00604-019-3277-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
|
11
|
Xu G, Jarjes ZA, Wang HW, Phillips ARJ, Kilmartin PA, Travas-Sejdic J. Detection of Neurotransmitters by Three-Dimensional Laser-Scribed Graphene Grass Electrodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42136-42145. [PMID: 30444110 DOI: 10.1021/acsami.8b16692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon nanomaterials possess superb properties and have contributed considerably to the advancement of integrated point-of-care chemical and biological sensing devices. Graphene has been widely researched as a signal transducing and sensing material. Here, a grass-like laser-scribed graphene (LSG) was synthesized by direct laser induction on common polyimide plastics. The resulting LSG grass was employed as a disposable electrochemical sensor for the detection of three neurotransmitters, dopamine (DA), epinephrine (EP), and norepinephrine (NE), and in the presence of uric acid and ascorbic acid as potential interferants, using differential pulse voltammetry and cyclic voltammetry. The LSG grass sensor achieved sensitivities of 0.243, 0.067, and 0.110 μA μM-1 for DA, EP, and NE, respectively, whereas the limits of detection were 0.43, 1.1, and 1.3 μM, respectively. The selectivity of LSG grass was excellent for competing biomarkers with high structural similarity (EP vs NE and EP vs DA). The exceptional performance of LSG grass for DA, EP, and NE detection holds a promising future for carbon nanomaterial sensors with unique surface morphologies.
Collapse
Affiliation(s)
- Guangyuan Xu
- MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| | | | | | | | | | - Jadranka Travas-Sejdic
- MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| |
Collapse
|
12
|
Electrochemical reduced graphene oxide-poly(eriochrome black T)/gold nanoparticles modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2018.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Tukimin N, Abdullah J, Sulaiman Y. Electrodeposition of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/manganese dioxide for simultaneous detection of uric acid, dopamine and ascorbic acid. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|