1
|
Donker N, Schönauer-Kamin D, Moos R. Mixed-Potential Ammonia Sensor Based on a Dense Yttria-Stabilized Zirconia Film Manufactured at Room Temperature by Powder Aerosol Deposition. SENSORS (BASEL, SWITZERLAND) 2024; 24:811. [PMID: 38339528 PMCID: PMC10857374 DOI: 10.3390/s24030811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Powder aerosol deposition (often abbreviated as PAD, PADM, or ADM) is a coating method used to obtain dense ceramic films at room temperature. The suitability of this method to obtain ammonia mixed-potential sensors based on an yttria-stabilized zirconia (YSZ) electrolyte that is manufactured using PAD and a V2O5-WO3-TiO2 (VWT)-covered electrode is investigated in this study. The sensor characteristics are compared with data from sensors with screen-printed YSZ solid electrolytes. The PAD sensors outperform those in terms of sensitivity with 117 mV/decade NH3 compared to 88 mV/decade. A variation in the sensor temperature shows that the NH3 sensitivity strongly depends on the sensor temperature and decreases with higher sensor temperature. Above 560 °C, the characteristic curve shifts from exponential to linear dependency. Variations in the water and the oxygen content in the base gas (usually 10% oxygen, 2% water vapor in nitrogen) reveal a strong dependence of the characteristic curve on the oxygen content. Water vapor concentration variations barely affect the sensor signal.
Collapse
Affiliation(s)
| | | | - Ralf Moos
- Department of Functional Materials, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
2
|
Simonenko NP, Fisenko NA, Fedorov FS, Simonenko TL, Mokrushin AS, Simonenko EP, Korotcenkov G, Sysoev VV, Sevastyanov VG, Kuznetsov NT. Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. SENSORS (BASEL, SWITZERLAND) 2022; 22:3473. [PMID: 35591162 PMCID: PMC9102873 DOI: 10.3390/s22093473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
Herein, we review printing technologies which are commonly approbated at recent time in the course of fabricating gas sensors and multisensor arrays, mainly of chemiresistive type. The most important characteristics of the receptor materials, which need to be addressed in order to achieve a high efficiency of chemisensor devices, are considered. The printing technologies are comparatively analyzed with regard to, (i) the rheological properties of the employed inks representing both reagent solutions or organometallic precursors and disperse systems, (ii) the printing speed and resolution, and (iii) the thickness of the formed coatings to highlight benefits and drawbacks of the methods. Particular attention is given to protocols suitable for manufacturing single miniature devices with unique characteristics under a large-scale production of gas sensors where the receptor materials could be rather quickly tuned to modify their geometry and morphology. We address the most convenient approaches to the rapid printing single-crystal multisensor arrays at lab-on-chip paradigm with sufficiently high resolution, employing receptor layers with various chemical composition which could replace in nearest future the single-sensor units for advancing a selectivity.
Collapse
Affiliation(s)
- Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Nikita A. Fisenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., 125047 Moscow, Russia
| | - Fedor S. Fedorov
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Str., 121205 Moscow, Russia;
| | - Tatiana L. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Artem S. Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Ghenadii Korotcenkov
- Department of Theoretical Physics, Moldova State University, 2009 Chisinau, Moldova;
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Str., 410054 Saratov, Russia
| | - Vladimir G. Sevastyanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| |
Collapse
|
3
|
Annealing of Gadolinium-Doped Ceria (GDC) Films Produced by the Aerosol Deposition Method. MATERIALS 2018; 11:ma11112072. [PMID: 30360540 PMCID: PMC6266497 DOI: 10.3390/ma11112072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Solid oxide fuel cells need a diffusion barrier layer to protect the zirconia-based electrolyte if a cobalt-containing cathode material like lanthanum strontium cobalt ferrite (LSCF) is used. This protective layer must prevent the direct contact and interdiffusion of both components while still retaining the oxygen ion transport. Gadolinium-doped ceria (GDC) meets these requirements. However, for a favorable cell performance, oxide ion conducting films that are thin yet dense are required. Films with a thickness in the sub-micrometer to micrometer range were produced by the dry room temperature spray-coating technique, aerosol deposition. Since commercially available GDC powders are usually optimized for the sintering of screen printed films or pressed bulk samples, their particle morphology is nanocrystalline with a high surface area that is not suitable for aerosol deposition. Therefore, different thermal and mechanical powder pretreatment procedures were investigated and linked to the morphology and integrity of the sprayed films. Only if a suitable pretreatment was conducted, dense and well-adhering GDC films were deposited. Otherwise, low-strength films were formed. The ionic conductivity of the resulting dense films was characterized by impedance spectroscopy between 300 °C and 1000 °C upon heating and cooling. A mild annealing occurred up to 900 °C during first heating that slightly increased the electric conductivity of GDC films formed by aerosol deposition.
Collapse
|