1
|
Agrawal K, Prabhakar S, Bakthavachalu B, Chaturvedi D. Distinct developmental patterns in Anopheles stephensi organ systems. Dev Biol 2024; 508:107-122. [PMID: 38272285 PMCID: PMC7615899 DOI: 10.1016/j.ydbio.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Anatomical profiles of insects inform vector biology, comparative development and evolutionary studies with applications in forensics, agriculture and disease control. This study presents a comprehensive, high-resolution developmental profile of Anopheles stephensi, encompassing larval, pupal, and adult stages, obtained through microCT scanning. The results indicate in situ anatomical changes in most organ systems, including the central nervous system, eyes, musculature, alimentary canal, salivary glands, and ovaries, among other organ systems, except for the developing heart. We find significant differences in the mosquito gut, body-wall, and flight muscle development during metamorphosis from other dipterans like Drosophila. Specifically, indirect flight muscle specification and growth can be traced back at least to the 4th instar A. stephensi larvae, as opposed to post-puparial development in other Dipterans like Drosophila and Calliphora. Further, while Drosophila larval body-wall muscles and gut undergo histolysis, changes to these organs during mosquito metamorphosis are less pronounced. These observations, and raw data therein may serve as a reference for studies on the development and the genetics of mosquitoes. Overall, the detailed developmental profile of A. stephensi presented here illuminates the unique anatomy and developmental processes of Culicidae, with important implications for vector biology, disease control, and comparative evolutionary studies.
Collapse
Affiliation(s)
- Khushboo Agrawal
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, 560065, India; School of Biotechnology, Amrita University, Kollam, 690525, Kerala, India
| | - Sunil Prabhakar
- Centre for Cellular and Molecular Platforms, Bellary Road, Bangalore, 560065, India
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, 560065, India; School of Basic Sciences, Indian Institute of Technology, Mandi, 175005, India.
| | - Dhananjay Chaturvedi
- National Centre for Biological Sciences, TIFR, Bangalore, 560065, India; CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
| |
Collapse
|
2
|
Alba-Tercedor J, Vilchez S. Anatomical damage caused by Bacillus thuringiensis variety israelensis in yellow fever mosquito Aedes aegypti (L.) larvae revealed by micro-computed tomography. Sci Rep 2023; 13:8759. [PMID: 37253797 DOI: 10.1038/s41598-023-35411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023] Open
Abstract
With micro-computed tomography techniques, using the single-distance phase-retrieval algorithm phase contrast, we reconstructed enhanced rendered images of soft tissues of Aedes aeqypti fourth instar larvae after Bti treatment. In contrast to previous publications based on conventional microscopy, either optical or electron microscopy, which were limited to partial studies, mostly in the form of histological sections, here we show for the first time the effects of Bti on the complete internal anatomy of an insect. Using 3D rendered images it was possible to study the effect of the bacterium in tissues and organs, not only in sections but also as a whole. We compared the anatomy of healthy larvae with the changes undergone in larvae after being exposed to Bti (for 30 min, 1 h and 6 h) and observed the progressive damage that Bti produce. Damage to the midgut epithelia was confirmed, with progressive swelling of the enterocytes, thickening epithelia, increase of the vacuolar spaces and finally cell lysis, producing openings in the midgut walls. Simultaneously, the larvae altered their motility, making it difficult for them to rise to the surface and position the respiratory siphon properly to break surface tension and breathe. Internally, osmotic shock phenomena were observed, resulting in a deformation of the cross-section shape, producing the appearance of a wide internal space between the cuticle and the internal structures and a progressive collapse of the tracheal trunks. Taken together, these results indicate the death of the larvae, not by starvation as a consequence of the destruction of the epithelia of the digestive tract as previously stated, but due to a synergic catastrophic multifactor process in addition to asphyxia due to a lack of adequate gas exchange.
Collapse
Affiliation(s)
- Javier Alba-Tercedor
- Department of Zoology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| | - Susana Vilchez
- Institute of Biotechnology and Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
3
|
Ravichandran NK, Lakshmikantha HT, Park HS, Jeon M, Kim J. Micron-scale human enamel layer characterization after orthodontic bracket debonding by intensity-based layer segmentation in optical coherence tomography images. Sci Rep 2021; 11:10831. [PMID: 34035385 PMCID: PMC8149424 DOI: 10.1038/s41598-021-90354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
In clinical orthodontic practice, fixed brackets are widely used for tooth movement and adjustments. Although years of research and development have improved the workability of fixed orthodontic brackets, there are still controversies regarding its plausible destructive influence on the enamel surface of tooth. This, in turn, makes the quantitative assessment of the enamel surface after specific orthodontic treatment procedures important in order to opt for the most effective treatment procedure. Through this study, we show the practical applicability of optical coherence tomography (OCT) as a non-ionizing and nondestructive assessment tool for measuring enamel loss after each step of orthodontic bracket bonding. Two-dimensional and volumetric OCT images are used for the evaluation of the tooth enamel. From the depth intensity profile analysis of cross-sectional OCT images, the changes in the individual internal layer thickness are calculated. A software algorithm was developed to evaluate the structural connectivity in the enamel for analyzing enamel loss on the tooth surface and for detecting enamel abrasion. An intensity-based layer segmentation algorithm is also developed to analyze and evaluate enamel wear in the tooth after each step. Using the proposed algorithms, the total enamel present after each treatment procedure was measured and tabulated for analysis.
Collapse
Affiliation(s)
- Naresh Kumar Ravichandran
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.,Center for Scientific Instrumentation, Korea Basic Science Institute, 169148 Gwahakro Yuseonggu, Daejeon, 34133, Republic of Korea
| | | | - Hyo-Sang Park
- Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| |
Collapse
|
4
|
Saleah SA, Kim P, Seong D, Wijesinghe RE, Jeon M, Kim J. A preliminary study of post-progressive nail-art effects on in vivo nail plate using optical coherence tomography-based intensity profiling assessment. Sci Rep 2021; 11:666. [PMID: 33436674 PMCID: PMC7804019 DOI: 10.1038/s41598-020-79497-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023] Open
Abstract
Nail beautification is a widely applied gender independent practice. Excessive nail beautifications and nail-arts have a direct impact on the nail structure and can cause nail disorders. Therefore, the assessment of post-progressive nail-art effects on the nail is essential to maintain optimal nail health and to avoid any undesirable disorders. In this study, in vivo nails were examined in control stage, with a nail-art stage, and after removing the nail-art stage using a 1310 nm spectral-domain optical coherence tomography (SD-OCT) system. The acquired cross-sectional OCT images were analyzed by a laboratory customized signal processing algorithm to obtain scattered intensity profiling assessments that could reveal the effects of nail beautification on the nail plate. The formation and progression of cracks on the nail plate surface were detected as an effect of nail beautification after 72 h of nail-art removal. Changes in backscattered light intensity and nail plate thickness of control and art-removed nails were quantitatively compared. The results revealed the potential feasibility of the developed OCT-based inspection procedure to diagnose post-progressive nail-art effects on in vivo nail plate, which can be helpful to prevent nail plate damages during art removal through real-time monitoring of the boundary between the nail plate and nail-art. Besides nail-art effects, the developed method can also be used for the investigation of nail plate abnormalities by examining the inconsistency of internal and external nail plate structure, which can be diagnosed with both qualitative and quantitative assessments from a clinical perspective.
Collapse
Affiliation(s)
- Sm Abu Saleah
- grid.258803.40000 0001 0661 1556School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566 South Korea
| | - Pilun Kim
- grid.464630.30000 0001 0696 9566Production Engineering Research Institute, LG Electronics, 17790, 222 LG-ro Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do South Korea
| | - Daewoon Seong
- grid.258803.40000 0001 0661 1556School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566 South Korea
| | - Ruchire Eranga Wijesinghe
- grid.267198.30000 0001 1091 4496Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10200 Sri Lanka
| | - Mansik Jeon
- grid.258803.40000 0001 0661 1556School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566 South Korea
| | - Jeehyun Kim
- grid.258803.40000 0001 0661 1556School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566 South Korea
| |
Collapse
|
5
|
Seong D, Kwon J, Jeon D, Wijesinghe RE, Lee J, Ravichandran NK, Han S, Lee J, Kim P, Jeon M, Kim J. In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography. SENSORS (BASEL, SWITZERLAND) 2019; 20:E64. [PMID: 31877652 PMCID: PMC6982896 DOI: 10.3390/s20010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022]
Abstract
Non-invasive characterization of micro-vibrations in the tympanic membrane (TM) excited by external sound waves is considered as a promising and essential diagnosis in modern otolaryngology. To verify the possibility of measuring and discriminating the vibrating pattern of TM, here we describe a micro-vibration measurement method of latex membrane resembling the TM. The measurements are obtained with an externally generated audio stimuli of 2.0, 2.2, 2.8, 3.1 and 3.2 kHz, and their respective vibrations based tomographic, volumetric and quantitative evaluations were acquired using optical Doppler tomography (ODT). The micro oscillations and structural changes which occurred due to diverse frequencies are measured with sufficient accuracy using a highly sensitive ODT system implied phase subtraction method. The obtained results demonstrated the capability of measuring and analyzing the complex varying micro-vibration of the membrane according to implied sound frequency.
Collapse
Affiliation(s)
- Daewoon Seong
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Jaehwan Kwon
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Deokmin Jeon
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Ruchire Eranga Wijesinghe
- Department of Biomedical Engineering, College of Engineering, Kyungil University, Gyeongsan 38428, Korea;
| | - Jaeyul Lee
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Naresh Kumar Ravichandran
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Sangyeob Han
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Junsoo Lee
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Pilun Kim
- School of Medicine, Institute of Biomedical Engineering, Kyungpook National University, Daegu 41944, Korea;
| | - Mansik Jeon
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Jeehyun Kim
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| |
Collapse
|
6
|
Nioi M, Napoli PE, Mayerson SM, Fossarello M, d’Aloja E. Optical coherence tomography in forensic sciences: a review of the literature. Forensic Sci Med Pathol 2019; 15:445-452. [DOI: 10.1007/s12024-019-00136-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
|
7
|
3-Dimensional characterization of cortical bone microdamage following placement of orthodontic microimplants using Optical Coherence Tomography. Sci Rep 2019; 9:3242. [PMID: 30824805 PMCID: PMC6397251 DOI: 10.1038/s41598-019-39670-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/30/2019] [Indexed: 11/08/2022] Open
Abstract
Microimplants are being used extensively in clinical practice to achieve absolute anchorage. Success of microimplant mainly depend on its primary stability onto the cortical bone surface and the associated Microdamage of the cortical bone during insertion procedure leads to many a microimplants to fail and dislodge from the cortical bone leading to its failure. Even though, previous studies showed occurrence of microdamage in the cortical bone, they were mainly 2-dimension studies or studies that were invasive to the host. In the present study, we used a non-invasive, non-ionizing imaging technique- Optical Coherence Tomography (OCT), to image and analyze the presence of microdamage along the cortical bone surrounding the microimplant. We inserted 80 microimplants in two different methods (drill and drill free method) and in two different angulations onto the cortical bone surface. Images were obtained in both 2D and 3D imaging modes. In the images, microdamage in form of microcracks on the cortical bone surface around the bone-microimplant interface and micro-elevations of the cortical bone in angulated microimplant insertions and the presence of bone debris due to screwing motion of the microimplant on insertion can be appreciated visually and quantitatively through the depth intensity profile analysis of the images.
Collapse
|
8
|
Lakshmikantha HT, Ravichandran NK, Jeon M, Kim J, Park HS. Assessment of cortical bone microdamage following insertion of microimplants using optical coherence tomography: a preliminary study. J Zhejiang Univ Sci B 2018; 19:818-828. [PMID: 30387332 DOI: 10.1631/jzus.b1700612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The study was done to evaluate the efficacy of optical coherence tomography (OCT), to detect and analyze the microdamage occurring around the microimplant immediately following its placement, and to compare the findings with micro-computed tomography (μCT) images of the samples to validate the result of the present study. METHODS Microimplants were inserted into bovine bone samples. Images of the samples were obtained using OCT and μCT. Visual comparisons of the images were made to evaluate whether anatomical details and microdamage induced by microimplant insertion were accurately revealed by OCT. RESULTS The surface of the cortical bone with its anatomical variations is visualized on the OCT images. Microdamage occurring on the surface of the cortical bone around the microimplant can be appreciated in OCT images. The resulting OCT images were compared with the μCT images. A high correlation regarding the visualization of individual microcracks was observed. The depth penetration of OCT is limited when compared to μCT. CONCLUSIONS OCT in the present study was able to generate high-resolution images of the microdamage occurring around the microimplant. Image quality at the surface of the cortical bone is above par when compared with μCT imaging, because of the inherent high contrast and high-resolution quality of OCT systems. Improvements in the imaging depth and development of intraoral sensors are vital for developing a real-time imaging system and integrating the system into orthodontic practice.
Collapse
Affiliation(s)
| | - Naresh Kumar Ravichandran
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Mansik Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Jeehyun Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Hyo-Sang Park
- Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|