1
|
Matatagui D, Bastida Á, Horrillo MC. Novel SH-SAW Biosensors for Ultra-Fast Recognition of Growth Factors. BIOSENSORS 2021; 12:bios12010017. [PMID: 35049645 PMCID: PMC8773814 DOI: 10.3390/bios12010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022]
Abstract
In this study, we investigated a label-free time efficient biosensor to recognize growth factors (GF) in real time, which are of gran interesting in the regulation of cell division and tissue proliferation. The sensor is based on a system of shear horizontal surface acoustic wave (SH-SAW) immunosensor combined with a microfluidic chip, which detects GF samples in a dynamic mode. In order to prove this method, to our knowledge not previously used for this type of compounds, two different GFs were tested by two immunoreactions: neurotrophin-3 and fibroblast growth factor-2 using its polyclonal antibodies. GF detection was conducted via an enhanced sequential workflow to improve total test time of the immunoassay, which shows that this type of biosensor is a very promising method for ultra-fast recognition of these biomolecules due to its great advantages: portability, simplicity of use, reusability, low cost, and detection within a relatively short period of time. Finally, the biosensor is able to detect FGF-2 growth factor in a concentration wide range, from 1–25 µg/mL, for a total test time of ~15 min with a LOD of 130 ng/mL.
Collapse
Affiliation(s)
- Daniel Matatagui
- Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain;
| | - Ágatha Bastida
- Instituto de Química Orgánica General (IQOG), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
- Correspondence: (M.C.H.); (Á.B.)
| | - M. Carmen Horrillo
- Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain;
- Correspondence: (M.C.H.); (Á.B.)
| |
Collapse
|
2
|
Agostini M, Cecchini M. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. NANOTECHNOLOGY 2021; 32:312001. [PMID: 33887716 DOI: 10.1088/1361-6528/abfaba] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/22/2021] [Indexed: 05/20/2023]
Abstract
Surface acoustic waves (SAWs) have the potential to become the basis for a wide gamut of lab-on-a-chips (LoCs). These mechanical waves are among the most promising physics that can be exploited for fulfilling all the requirements of commercially appealing devices that aim to replace-or help-laboratory facilities. These requirements are low processing cost of the devices, scalable production, controllable physics, large flexibility of tasks to perform, easy device miniaturization. To date, SAWs are among the small set of technologies able to both manipulate and analyze biological liquids with high performance. Therefore, they address the main needs of microfluidics and biosensing. To this purpose, the use of high-frequency SAWs is key. In the ultra-high-frequency regime (UHF, 300 MHz-3 GHz) SAWs exhibit large sensitivities to molecule adsorption and unparalleled fluid manipulation capabilities, together with overall device miniaturization. The UHF-SAW technology is expected to be the realm for the development of complex, reliable, fully automated, high-performance LoCs. In this review, we present the most recent works on UHF-SAWs for microfluidics and biosensing, with a particular focus on the LoC application. We derive the relevant scale laws, useful formulas, fabrication guidelines, current limitations of the technology, and future developments.
Collapse
Affiliation(s)
- Matteo Agostini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| | - Marco Cecchini
- INTA srl, Intelligent Acoustics Systems, Via Nino Pisano 14, I-56122 Pisa, Italy
| |
Collapse
|
3
|
Agostini M, Amato F, Vieri ML, Greco G, Tonazzini I, Baroncelli L, Caleo M, Vannini E, Santi M, Signore G, Cecchini M. Glial-fibrillary-acidic-protein (GFAP) biomarker detection in serum-matrix: Functionalization strategies and detection by an ultra-high-frequency surface-acoustic-wave (UHF-SAW) lab-on-chip. Biosens Bioelectron 2020; 172:112774. [PMID: 33160234 DOI: 10.1016/j.bios.2020.112774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 01/16/2023]
Abstract
Glial-fibrillary-acidic-protein (GFAP) has recently drawn significant attention from the clinical environment as a promising biomarker. The pathologies which can be linked to the presence of GFAP in blood severely affect the human central nervous system. These pathologies are glioblastoma multiforme (GBM), traumatic brain injuries (TBIs), multiple sclerosis (MS), intracerebral hemorrhage (ICH), and neuromyelitis optica (NMO). Here, we develop three different detection strategies for GFAP, among the most popular in the biosensing field and never examined side by side within the experimental frame. We compare their capability of detecting GFAP in a clean-buffer and serum-matrix by using gold-coated quartz-crystal-microbalance (QCM) sensors. All the three detection strategies are based on antibodies, and each of them focuses on a key aspect of the biosensing process. The first is based on a polyethylene glycol (PEG) chain for antifouling, the second on a protein-G linker for controlling antibody-orientation, and the third on antibody-splitting and direct surface immobilization for high-surface coverage. Then, we select the best-performing protocol and validate its detection performance with an ultra-high-frequency (UHF) surface-acoustic-wave (SAW) based lab-on-chip (LoC). GFAP successful detection is demonstrated in a clean-buffer and serum-matrix at a concentration of 35 pM. This GFAP level is compatible with clinical diagnostics. This result suggests the use of our technology for the realization of a point-of-care biosensing platform for the detection of multiple brain-pathology biomarkers.
Collapse
Affiliation(s)
- M Agostini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy; INTA srl, Intelligent Acoustics Systems, Via Nino Pisano 14, 56122, Pisa, Italy
| | - F Amato
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - M L Vieri
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - G Greco
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - I Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - L Baroncelli
- Institute of Neuroscience, National Research Council (CNR), via G. Moruzzi 1, 56124, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, viale del Tirreno 331, 56128, Pisa, Italy
| | - M Caleo
- Institute of Neuroscience, National Research Council (CNR), via G. Moruzzi 1, 56124, Pisa, Italy; Department of Biomedical Sciences, University of Padua, via G. Colombo 3, 35121, Padua, Italy
| | - E Vannini
- Institute of Neuroscience, National Research Council (CNR), via G. Moruzzi 1, 56124, Pisa, Italy
| | - M Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - G Signore
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy; Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, Pisa, Italy
| | - M Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy; INTA srl, Intelligent Acoustics Systems, Via Nino Pisano 14, 56122, Pisa, Italy.
| |
Collapse
|
4
|
Ji J, Pang Y, Li D, Huang Z, Zhang Z, Xue N, Xu Y, Mu X. An aptamer-based shear horizontal surface acoustic wave biosensor with a CVD-grown single-layered graphene film for high-sensitivity detection of a label-free endotoxin. MICROSYSTEMS & NANOENGINEERING 2020; 6:4. [PMID: 34567619 PMCID: PMC8433395 DOI: 10.1038/s41378-019-0118-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/10/2019] [Accepted: 10/11/2019] [Indexed: 05/22/2023]
Abstract
The thickness of the sensitive layer has an important influence on the sensitivity of a shear horizontal surface acoustic wave (SH-SAW) biosensor with a delay-line structure and lower layer numbers of graphene produce better sensitivity for biological detection. Therefore, a label-free and highly sensitive SH-SAW biosensor with chemical vapor deposition (CVD-)-grown single-layered graphene (SLG) for endotoxin detection was developed in this study. With this methodology, SH-SAW biosensors were fabricated on a 36° Y-90° X quartz substrate with a base frequency of 246.2 MHz, and an effective detection cell was fabricated using acrylic material. To increase the surface hydrophilicity, chitosan was applied to the surface of the SLG film. Additionally, the aptamer was immobilized on the surface of the SLG film by cross-linking with glutaraldehyde. Finally, the sensitivity was verified by endotoxin detection with a linear detection ranging from 0 to 100 ng/mL, and the detection limit (LOD) was as low as 3.53 ng/mL. In addition, the stability of this type of SH-SAW biosensor from the air phase to the liquid phase proved to be excellent and the specificity was tested and verified by detecting the endotoxin obtained from Escherichia coli (E. coli), the endotoxin obtained from Pseudomonas aeruginosa (P. aeruginosa), and aflatoxin. Therefore, this type of SH-SAW biosensor with a CVD-grown SLG film may offer a promising approach to endotoxin detection, and it may have great potential in clinical applications.
Collapse
Affiliation(s)
- Junwang Ji
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, 400044 Chongqing, China
| | - Yiquan Pang
- School of Chemistry and Chemical Engineering, Chongqing University, 400030 Chongqing, China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, 400044 Chongqing, China
| | - Zheng Huang
- Department of Applied Physics, Chongqing University, 401331 Chongqing, China
| | - Zuwei Zhang
- Chongqing Acoustic-Optic-Electric Corporation, China Electronic Technology Group Corporation, 400060 Chongqing, China
| | - Ning Xue
- Institute of Electronics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Yi Xu
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, 400044 Chongqing, China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, 400044 Chongqing, China
| |
Collapse
|