1
|
Reiker T, Liu Z, Winter C, Cappellari MV, Abradelo DG, Strassert CA, Zhang D, Zacharias H. Ultrafast electron dynamics in excited states of conjugated thiophene-fluorene organic polymer (pF8T2) thin films. Phys Chem Chem Phys 2024; 26:4736-4751. [PMID: 38251969 DOI: 10.1039/d3cp00502j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The electronic states of poly(9,9-dioctylfluorenyl-alt-bithiophene) pF8T2 on H/Si(100) substrates, prototypical for organic photovoltaics, were investigated by ultrafast photoelectron spectroscopy and by time-resolved fluorescence studies. Occupied and unoccupied electronic states were analysed by ultraviolet photoelectron spectroscopy (UPS), static and dynamic femtosecond two-photon photoemission (2PPE), and time-correlated single photon counting (TCSPC). Time-resolved measurements allow assessment of population lifetimes of intermediate states. The combination of time-resolved photoelectron spectroscopy and fluorescence excitation allows following the electronic dynamics in excited states from the femtosecond to the nanosecond time scale. For this prototypical material the electron kinetic energy resolved lifetimes range from about a few tens of femtoseconds up to hundreds of picoseconds. After annealing these types of organic thin films the efficiency of organic solar cells usually increases. We show that annealing does not influence the initial ultrafast charge generation processes, but the long-lived states. However, the nanosecond scale fluorescence lifetimes measured by TCSPC are prolonged after annealing, which therefore is identified as the cause of a greater exciton diffusion range and thus is beneficial for charge carrier extraction.
Collapse
Affiliation(s)
- T Reiker
- Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany.
- Physics Institute, University of Münster, 48149 Münster, Germany
| | - Z Liu
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - C Winter
- Physics Institute, University of Münster, 48149 Münster, Germany
| | - M V Cappellari
- Center for Nanotechnology and Institute for Inorganic and Analytical Chemistry, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - D Gonzalez Abradelo
- Center for Nanotechnology and Institute for Inorganic and Analytical Chemistry, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - C A Strassert
- Center for Nanotechnology and Institute for Inorganic and Analytical Chemistry, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - D Zhang
- Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - H Zacharias
- Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany.
- Physics Institute, University of Münster, 48149 Münster, Germany
| |
Collapse
|
2
|
Mondal A, Hazra A, Chattopadhyay MK, Kundu D, Tarai SK, Biswas P, Bhattacharjee A, Mandal S, Banerjee P. Explicating the recognition phenomenon of hazardous nitro-aromatic compound from contaminated environmental and cellular matrices by rationally designed pyridine-functionalized molecular probes. Heliyon 2023; 9:e13620. [PMID: 36873140 PMCID: PMC9975245 DOI: 10.1016/j.heliyon.2023.e13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
In the quest of recognizing hazardous nitro-aromatic compounds in water, two pyridine-functionalized Schiff-base chemosensors, DMP ((E)-N-(3,4-dimethoxybenzylidene)(pyridin-2-yl)methanamine)) and MP (4-((E)-((pyridin-2-yl)methylimino)methyl)-2-ethoxyphenol) have been synthesized to detect mutagenic 2,4,6-Trinitrophenol (TNP) in soil, water as well as cellular matrices by producing turn-off emission responses as a combined consequence of PET and RET processes. Several experimental analyses including ESI-MS, FT-IR, photoluminescence, 1H NMR titration, and the theoretical calculations ascertained the formation and sensing efficacies of the chemosensors. The analytical substantiations revealed that structural variation of the chemosensors played a significant role in improving the sensing efficiency, which would certainly be worthwhile in developing small molecular TNP sensors. The present work depicted that the electron density within the MP framework was more than that of DMP due to the intentional incorporation of -OEt and -OH groups. As a result, MP represented a strong interaction mode towards the electron-deficient TNP with a detection limit of 39 μM.
Collapse
Affiliation(s)
- Amita Mondal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Department of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, India
| | - Abhijit Hazra
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | | | - Debojyoti Kundu
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Swarup Kumar Tarai
- Department of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology, M. G. Avenue, Durgapur 713209, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, M. G. Avenue, Durgapur 713209, India
| | - Sukdeb Mandal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Aguado R, Santos ARMG, Vallejos S, Valente AJM. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines. Molecules 2022; 27:molecules27092900. [PMID: 35566254 PMCID: PMC9101589 DOI: 10.3390/molecules27092900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 01/25/2023] Open
Abstract
Although it is well-known that nitroaromatic compounds quench the fluorescence of different conjugated polymers and form colored Meisenheimer complexes with proper nucleophiles, the potential of paper as a substrate for those macromolecules can be further developed. This work undertakes this task, impregnating paper strips with a fluorene-phenylene copolymer with quaternary ammonium groups, a bisfluorene-based cationic polyelectrolyte, and poly(2-(dimethylamino)ethyl methacrylate) (polyDMAEMA). Cationic groups make the aforementioned polyfluorenes attachable to paper, whose surface possesses a slightly negative charge and avoid interference from cationic quenchers. While conjugated polymers had their fluorescence quenched with nitroaromatic vapors in a non-selective way, polyDMAEMA-coated papers had a visual response that was selective to 2,4,6-trinitrotoluene (TNT), and that could be easily identified, and even quantified, under natural light. Far from implying that polyfluorenes should be ruled out, it must be taken into account that TNT-filled mines emit vapors from 2,4-dinitrotoluene (DNT) and dinitrobenzene isomers, which are more volatile than TNT itself. Atmospheres with only 790 ppbv TNT or 277 ppbv DNT were enough to trigger a distinguishable response, although the requirement for certain exposure times is an important limitation.
Collapse
Affiliation(s)
- Roberto Aguado
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (R.A.); (A.R.M.G.S.); (S.V.)
- LEPAMAP-PRODIS Research Group, University of Girona, M. Aurèlia Capmany 61, 17003 Girona, Spain
| | - A. Rita M. G. Santos
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (R.A.); (A.R.M.G.S.); (S.V.)
| | - Saúl Vallejos
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (R.A.); (A.R.M.G.S.); (S.V.)
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Artur J. M. Valente
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (R.A.); (A.R.M.G.S.); (S.V.)
- Correspondence:
| |
Collapse
|
4
|
Santos APLA, Deokaran GO, Costa CV, Gama LILM, Mazzini Júnior EG, de Assis AML, de Freitas JD, de Araujo WR, Dias RP, da Silva JCS, Costa LMM, Ribeiro AS. A "turn-off" fluorescent sensor based on electrospun polycaprolactone nanofibers and fluorene(bisthiophene) derivative for nitroaromatic explosive detection. Forensic Sci Int 2021; 329:111056. [PMID: 34736045 DOI: 10.1016/j.forsciint.2021.111056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
The preparation of fluorene(bisthiophene)-based fluorescent nanofibers for nitroaromatic explosive detection provides a convenient rapid and low-cost strategy aiming at forensic applications. Polycaprolactone (PCL) and fluorene(bisthiophene) derivative (FBT) nanofibers were obtained by electrospinning technique as a free-standing mat and characterized by SEM, FTIR, thermal analysis and fluorescence spectroscopy. The PCL/FBT nanofibers presented high sensitivity towards 2,4,6-trinitrotoluene (TNT) and picric acid (PA), with fluorescence quenching (turn-off mechanism), and selectivity to another kind of explosives. The free-standing mats were used as a cloth strip that was swiped on surfaces contaminated with TNT traces allowing its visual detection under UV light source. These findings are particularly important for the development of a facile and promising strategy to assembly portable optical devices for nitroaromatic explosive detection.
Collapse
Affiliation(s)
- Anna Paula L A Santos
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A. C. Simões, 57072-970 Maceió, AL, Brazil
| | - Gerard O Deokaran
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A. C. Simões, 57072-970 Maceió, AL, Brazil; Criminalistics Institute of Alagoas, 57020-070, Maceió, AL, Brazil
| | - Cristiane V Costa
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A. C. Simões, 57072-970 Maceió, AL, Brazil
| | - Lillia I L M Gama
- Portable Chemical Sensors Lab, Institute of Chemistry, State University of Campinas, 13083-970, Campinas, SP, Brazil
| | - Edu G Mazzini Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A. C. Simões, 57072-970 Maceió, AL, Brazil
| | - Alexandro M L de Assis
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A. C. Simões, 57072-970 Maceió, AL, Brazil; Technical and Scientific Section of Alagoas, Federal Police, 57025-080, Maceió, AL, Brazil
| | | | - William R de Araujo
- Portable Chemical Sensors Lab, Institute of Chemistry, State University of Campinas, 13083-970, Campinas, SP, Brazil
| | - Roberta P Dias
- Federal University of Pernambuco, Campus Agreste, 55014-900 Caruaru, PE, Brazil
| | - Júlio C S da Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A. C. Simões, 57072-970 Maceió, AL, Brazil
| | - Ligia M M Costa
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A. C. Simões, 57072-970 Maceió, AL, Brazil
| | - Adriana S Ribeiro
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A. C. Simões, 57072-970 Maceió, AL, Brazil.
| |
Collapse
|
5
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
6
|
Samotaev N, Litvinov A, Etrekova M, Oblov K, Filipchuk D, Mikhailov A. Prototype of Nitro Compound Vapor and Trace Detector Based on a Capacitive MIS Sensor. SENSORS 2020; 20:s20051514. [PMID: 32164151 PMCID: PMC7085649 DOI: 10.3390/s20051514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/02/2022]
Abstract
A prototype of a nitro compound vapor and trace detector, which uses the pyrolysis method and a capacitive gas sensor based on the metal–insulator–semiconductor (MIS) structure type Pd–SiO2–Si, was developed and manufactured. It was experimentally established that the detection limit of trinitrotoluene trace for the detector prototype is 1 × 10−9 g, which corresponds to concentration from 10−11 g/cm3 to 10−12 g/cm3. The prototype had a response time of no more than 30 s. The possibility of further improving the characteristics of the prototype detector by reducing the overall dimensions and increasing the sensitivity of the MIS sensors is shown.
Collapse
Affiliation(s)
- Nikolay Samotaev
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe hwy 31, 115409 Moscow, Russia (M.E.)
- Correspondence:
| | - Artur Litvinov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe hwy 31, 115409 Moscow, Russia (M.E.)
| | - Maya Etrekova
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe hwy 31, 115409 Moscow, Russia (M.E.)
- “INKRAM” LLC Research and Production Company (“Inkram” RPC LLC), Mikhalkovskaya Street 63 “Б”, Bldg. 1, Floor 3, Premise VII, 125438 Moscow, Russia;
| | - Konstantin Oblov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe hwy 31, 115409 Moscow, Russia (M.E.)
| | - Dmitrii Filipchuk
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe hwy 31, 115409 Moscow, Russia (M.E.)
- “INKRAM” LLC Research and Production Company (“Inkram” RPC LLC), Mikhalkovskaya Street 63 “Б”, Bldg. 1, Floor 3, Premise VII, 125438 Moscow, Russia;
| | - Alexey Mikhailov
- “INKRAM” LLC Research and Production Company (“Inkram” RPC LLC), Mikhalkovskaya Street 63 “Б”, Bldg. 1, Floor 3, Premise VII, 125438 Moscow, Russia;
| |
Collapse
|
7
|
|