1
|
Johnson D, Kim U, Mobed-Miremadi M. Nanocomposite films as electrochemical sensors for detection of catalase activity. Front Mol Biosci 2022; 9:972008. [PMID: 36225256 PMCID: PMC9549927 DOI: 10.3389/fmolb.2022.972008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cross-linked hydrogel substrates have garnered attention as they simultaneously enable oxidoreductase reactions in a control volume extended to adsorption of redox capacitors for amplification of electrochemical signals. In this study, the effect of catalase immobilization in mold-casted alginate-based thin films (1 mm × 6 mm × 10 mm) containing multi walled carbon nanotubes (MWCNT) coated with chitosan has been studied via amperometry. The amperometric response was measured as a function of peroxide concentration, at a fixed potential of −0.4 V vs. SPCE in phosphate-buffered saline (pH = 7.4). Results indicate substrate detection is not diffusion-limited by the 100 μm thick chitosan layer, if the cationic polyelectrolyte is in contact with the sensing carbon electrode, and the linear detection of the enzyme absent in solution is enabled by immobilization (R2 = 0.9615). The ferricyanide-mediated biosensor exhibited a sensitivity of 4.55 μA/mM for the optimal formulation at room temperature comparable to other nanomaterial hybrid sensing solution namely amine-functionalized graphene with an average response time of 5 s for the optimal formulation. The suitability of the optimized chitosan-coated alginate slabs nano-environment for co-encapsulation of catalase and carbon nanotubes was confirmed by cyclic voltammetry.
Collapse
Affiliation(s)
| | - Unyoung Kim
- *Correspondence: Unyoung Kim, ; Maryam Mobed-Miremadi,
| | | |
Collapse
|
2
|
Materials for Chemical Sensing: A Comprehensive Review on the Recent Advances and Outlook Using Ionic Liquids, Metal–Organic Frameworks (MOFs), and MOF-Based Composites. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to measure and monitor the concentration of specific chemical and/or gaseous species (i.e., “analytes”) is the main requirement in many fields, including industrial processes, medical applications, and workplace safety management. As a consequence, several kinds of sensors have been developed in the modern era according to some practical guidelines that regard the characteristics of the active (sensing) materials on which the sensor devices are based. These characteristics include the cost-effectiveness of the materials’ manufacturing, the sensitivity to analytes, the material stability, and the possibility of exploiting them for low-cost and portable devices. Consequently, many gas sensors employ well-defined transduction methods, the most popular being the oxidation (or reduction) of the analyte in an electrochemical reactor, optical techniques, and chemiresistive responses to gas adsorption. In recent years, many of the efforts devoted to improving these methods have been directed towards the use of certain classes of specific materials. In particular, ionic liquids have been employed as electrolytes of exceptional properties for the preparation of amperometric gas sensors, while metal–organic frameworks (MOFs) are used as highly porous and reactive materials which can be employed, in pure form or as a component of MOF-based functional composites, as active materials of chemiresistive or optical sensors. Here, we report on the most recent developments relative to the use of these classes of materials in chemical sensing. We discuss the main features of these materials and the reasons why they are considered interesting in the field of chemical sensors. Subsequently, we review some of the technological and scientific results published in the span of the last six years that we consider among the most interesting and useful ones for expanding the awareness on future trends in chemical sensing. Finally, we discuss the prospects for the use of these materials and the factors involved in their possible use for new generations of sensor devices.
Collapse
|
3
|
Lee J, Mullen JW, Hussain G, Silvester DS. Effect of microelectrode array spacing on the growth of platinum electrodeposits and its implications for oxygen sensing in ionic liquids. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Ni E, Fang Y, Ma F, Ge G, Wu J, Wang Y, Lin Y, Xie H. A one-step potentiometric immunoassay for plasma cardiac troponin I using an antibody-functionalized bis-MPA-COOH dendrimer as a competitor with improved sensitivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2914-2921. [PMID: 32930214 DOI: 10.1039/d0ay00680g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we have reported a new one-step potentiometric immunoassay for the sensitive and specific detection of human plasma cardiac troponin I (cTnI), a biomarker of cardio-cerebrovascular diseases. Initially, the cTnI biomolecules were immobilized on the surface of a gold nanoparticle-functionalized screen-printed graphite electrode (SPGE). Thereafter, rabbit polyclonal antibodies to cTnI were covalently conjugated to the bis-MPA-COOH dendrimers through typical carbodiimide coupling. The introduction of the target analyte caused a competitive immunoreaction between the immobilized cTnI on the electrode and the conjugated antibody on the dendrimers. The potentiometric measurement was mainly derived from the change in the surface charge on the surface of the modified electrode due to the negatively charged bis-MPA-COOH dendrimers after the immunoreaction. On increasing target cTcI, the number of charged dendrimers on the immunosensor decreased, resulting in a change in the electric potential. Under optimum conditions, the potentiometric immunosensor exhibited good potentiometric responses for the detection of cTcI and allowed the determination of the target analyte at a concentration as low as 7.3 pg mL-1. An intermediate precision of ≤8.7% was accomplished with batch-to-batch identification. Meanwhile, the potentiometric immunosensor showed good anti-interfering capacity and selectivity against other proteins and biomarkers. Importantly, our system displayed high accuracy for the analysis of human plasma serum samples containing target cTcI relative to commercial human cTcI enzyme-linked immunosorbent assay (ELISA) kits.
Collapse
Affiliation(s)
- Erru Ni
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Yizhen Fang
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Fangfang Ma
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Gaoshun Ge
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Jingyi Wu
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Yingying Wang
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Huabin Xie
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| |
Collapse
|
5
|
Toniolo R, Dossi N, Giannilivigni E, Fattori A, Svigelj R, Bontempelli G, Giacomino A, Daniele S. Modified Screen Printed Electrode Suitable for Electrochemical Measurements in Gas Phase. Anal Chem 2020; 92:3689-3696. [PMID: 32008321 DOI: 10.1021/acs.analchem.9b04818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a convenient assembly for screen printed carbon electrodes (SPCE) suitable for analyses in gaseous samples which are of course lacking in supporting electrolytes. It consists of a circular crown of filter paper, soaked in a RTIL or a DES, placed upon a disposable screen printed carbon cell, so as to contact the outer edge of the carbon disk working electrode, as well as peripheral counter and reference electrodes. The electrical contact between the paper crown soaked in RTIL or DES and SPCE electrodes is assured by a gasket, and all components are installed in a polylactic acid holder. As a result of this configuration, a sensitive, fast-responding, membrane-free gas sensor is achieved where the real working electrode surface is the boundary zone of the carbon working disk contacted by the paper crown soaked in the polyelectrolyte. This assembly provides a portable and disposable electrochemical platform, assembled by the easy immobilization onto a porous and inexpensive supporting material such as paper of RTILs or DESs which are characterized by profitable electrical conductivity and negligible vapor pressure. The electroanalytical performance of this device was evaluated by voltammetric and flow injection analyses of oxygen which was chosen as prototype of electroactive gaseous analytes. The results obtained pointed out that this assembly is very profitable for the analysis of gaseous atmospheres, especially when used as detector for FIA in gaseous streams.
Collapse
Affiliation(s)
- Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Emanuele Giannilivigni
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Andrea Fattori
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Gino Bontempelli
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Agnese Giacomino
- Department of Drug Science and Technology, University of Torino, via Giuria 9, I-10125 Torino, Italy
| | - Salvatore Daniele
- Department of Molecular Science and Nanosystems, University of Ca' Foscari Venezia, via Torino 155, I-30137 Venezia-Mestre, Italy
| |
Collapse
|
6
|
Low-cost, thin-film, mass-manufacturable carbon electrodes for detection of the neurotransmitter dopamine. Bioelectrochemistry 2020; 133:107480. [PMID: 32045862 DOI: 10.1016/j.bioelechem.2020.107480] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
A flexible, thin-film carbon electrode is reported for detection of the key neurotransmitter dopamine using standard electroanalytical techniques of cyclic voltammetry, differential pulse voltammetry and square wave voltammetry. The thin-film electrode has been explored as a possible low-cost solution to detect low concentrations of dopamine and its performance has been compared with a commercially available screen printed carbon electrode. It was found that the thin-film electrode is more sensitive than the screen printed electrode, and can faithfully detect dopamine between 50 pM and 1 mM concentrations. The electrode provides a limit of detection of ~50 pM, displays good selectivity between dopamine and ascorbic acid, and is able to show a level of differentiation between the two compounds in terms of peak currents as well as oxidative potentials at physiologically relevant concentrations. This is in contrast to the screen printed electrode which is unable to discriminate between dopamine and ascorbic acid at the same concentrations. The key advantages of the presented electrode system are its low-cost, flexible substrate, and the ability to achieve very low levels of dopamine detection without requiring any electrode surface modification steps, a key factor in reducing fabrication costs and overall device complexity.
Collapse
|
7
|
García-Miranda Ferrari A, Foster CW, Kelly PJ, Brownson DAC, Banks CE. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. BIOSENSORS-BASEL 2018; 8:bios8020053. [PMID: 29890706 PMCID: PMC6023085 DOI: 10.3390/bios8020053] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022]
Abstract
Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.
Collapse
Affiliation(s)
- Alejandro García-Miranda Ferrari
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | - Christopher W Foster
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | - Peter J Kelly
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | - Dale A C Brownson
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Manchester M1 5GD, UK.
| |
Collapse
|