1
|
Liu G, Mu X, Liu L, Zhao S, Tian J. Bimetallic FeO x-TiO 2@Carbon hybrid structure materials with notable peroxidase enzyme mimics applied to one-step colorimetric detection of glucose. Mikrochim Acta 2024; 191:192. [PMID: 38467931 DOI: 10.1007/s00604-024-06264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
FeOx-TiO2@Carbon hybrid structure materials (FeOx-TiO2@CHs) with high peroxidase (POD)-like activity have been prepared by one-pot hydrothermal method. Based on the excellent POD activity of FeOx-TiO2@CHs, one pot colorimetric detection for glucose was constructed by using TMB as substrate with the synergistic reaction of glucose oxidase; the linear range and the limit of detection (LOD) are 25 ~ 1000 and 1.77 µM, respectively. Using this method, the glucose in serum real samples was detected with satisfactory results, and the results are consistent with that of the glucometer method in the hospital. The recovery in diabetic and artificial urine samples was 95.71 ~ 104.67% and 99.01 ~ 103.16%, respectively. The mechanism of the catalytic colorimetric reaction was also investigated by multiple measurements, and the results indicated that superoxide anions (O2•-) between FeOx-TiO2@CHs and substrate play a main role, but a small quantity of hydroxyl radical •OH and singlet oxygen 1O2 is also generated simultaneously. The one-pot reaction method is simple and fast; the detection process only requires a simple mixing, which is suitable for application in special environment.
Collapse
Affiliation(s)
- Guang Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaomei Mu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jianniao Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
2
|
Hsu CC, Chung WY, Chang CY, Wu CC, Lee CL. Enzymatic Glucose Fiber Sensor for Glucose Concentration Measurement with a Heterodyne Interferometry. SENSORS (BASEL, SWITZERLAND) 2023; 23:2990. [PMID: 36991701 PMCID: PMC10055821 DOI: 10.3390/s23062990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
In this study, we developed a glucose fiber sensor incorporating heterodyne interferometry to measure the phase difference produced by the chemical reaction between glucose and glucose oxidase (GOx). Both theoretical and experimental results showed that the amount of phase variation is inversely proportional to glucose concentration. The proposed method provided a linear measurement range of the glucose concentration from 10 mg/dL to 550 mg/dL. The experimental results indicated that the sensitivity is proportional to the length of the enzymatic glucose sensor, and the optimum resolution can be obtained at a sensor length of 3 cm. The optimum resolution of the proposed method is better than 0.6 mg/dL. Moreover, the proposed sensor demonstrates good repeatability and reliability. The average relative standard deviation (RSD) is better than 10% and satisfied the minimum requirement for point-of-care devices.
Collapse
Affiliation(s)
- Cheng-Chih Hsu
- Department of Electro-Optical Engineering, National United University, No. 2 Lienda, Miaoli 36063, Taiwan
| | - Wan-Yu Chung
- Department of Photonics Engineering, Yuan Ze University, 135, Yuan-Tung Road, Taoyuan City 32003, Taiwan
- ASE Technology Holding Co., Ltd., Nantze Export Processing Zone, Kaohsiung 81146, Taiwan
| | - Chun-Yi Chang
- Department of Electro-Optical Engineering, National United University, No. 2 Lienda, Miaoli 36063, Taiwan
| | - Chyan-Chyi Wu
- Department of Mechanical and Electromechanical Engineering, Tamkang University, New Taipei 25137, Taiwan
| | - Cheng-Ling Lee
- Department of Electro-Optical Engineering, National United University, No. 2 Lienda, Miaoli 36063, Taiwan
| |
Collapse
|
3
|
Renganathan B, Krishna Rao S, Ganesan A, Deepak A. Performance study of Ce doped ZnO Clad modified fiber optic Glucose sensor for blood sugar detection at various temperatures. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
5
|
Abstract
Temperature measurements are of great importance in many fields of human activities, including industry, technology, and science. For example, obtaining a certain temperature value or a sudden change in it can be the primary control marker of a chemical process. Fiber optic sensors have remarkable properties giving a broad range of applications. They enable continuous real-time temperature control in difficult-to-reach areas, in hazardous working environments (air pollution, chemical or ionizing contamination), and in the presence of electromagnetic disturbances. The use of fiber optic temperature sensors in polymer technology can significantly reduce the cost of their production. Moreover, the installation process and usage would be simplified. As a result, these types of sensors would become increasingly popular in industrial solutions. This review provides a critical overview of the latest development of fiber optic temperature sensors based on Fabry–Pérot interferometer made with polymer technology.
Collapse
|
6
|
3D Printing Filaments Facilitate the Development of Evanescent Wave Plastic Optical Fiber (POF) Chemosensors. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
One of the major difficulties in the development of evanescent wave optical fiber sensors (EWOFS) lies in the complexity of the manufacturing of the chemosensitive element, particularly when using plastic optical fibers (POFs). While these fibers are appealing waveguides thanks to their low cost, ease of connectorization and robustness, the need for removing the cladding material complicates the EWOFS fabrication. In this paper we discuss how 3D printing filaments can serve as an alternative to commercially available POF for the development of EWOFS. In the process of replacing the traditional POF, we compared the performance of two EWOFS for monitoring airborne formaldehyde. These sensitive elements were manufactured either from 1.75 mm diameter 3D printing filaments, or from a commercially available POF. After the optimization of their respective fabrication protocols, the analytical performance of the two formaldehyde EWOFS was compared in terms of sensitivity and reproducibility. In this regard, the easy-to-manufacture 3D printing filament-based waveguides provided 5-fold lower detection limits with respect to the commercial POF-based sensors. Although no statistically significant differences were found in terms of reproducibility, the simplification of the sensor manufacturing process together with the increased analytical performance for chemical sensing spur the use of 3D printing filaments for the development of new POF-based EWOFS.
Collapse
|
7
|
Soares MS, Vidal M, Santos NF, Costa FM, Marques C, Pereira SO, Leitão C. Immunosensing Based on Optical Fiber Technology: Recent Advances. BIOSENSORS-BASEL 2021; 11:bios11090305. [PMID: 34562895 PMCID: PMC8472567 DOI: 10.3390/bios11090305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The evolution of optical fiber technology has revolutionized a variety of fields, from optical transmission to environmental monitoring and biomedicine, given their unique properties and versatility. For biosensing purposes, the light guided in the fiber core is exposed to the surrounding media where the analytes of interest are detected by different techniques, according to the optical fiber configuration and biofunctionalization strategy employed. These configurations differ in manufacturing complexity, cost and overall performance. The biofunctionalization strategies can be carried out directly on bare fibers or on coated fibers. The former relies on interactions between the evanescent wave (EW) of the fiber and the analyte of interest, whereas the latter can comprise plasmonic methods such as surface plasmon resonance (SPR) and localized SPR (LSPR), both originating from the interaction between light and metal surface electrons. This review presents the basics of optical fiber immunosensors for a broad audience as well as the more recent research trends on the topic. Several optical fiber configurations used for biosensing applications are highlighted, namely uncladded, U-shape, D-shape, tapered, end-face reflected, fiber gratings and special optical fibers, alongside practical application examples. Furthermore, EW, SPR, LSPR and biofunctionalization strategies, as well as the most recent advances and applications of immunosensors, are also covered. Finally, the main challenges and an outlook over the future direction of the field is presented.
Collapse
|
8
|
Fiber Optic Based Distributed Mechanical Vibration Sensing. SENSORS 2021; 21:s21144779. [PMID: 34300519 PMCID: PMC8309848 DOI: 10.3390/s21144779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
The distributed long-range sensing system, using the standard telecommunication single-mode optical fiber for the distributed sensing of mechanical vibrations, is described. Various events generating vibrations, such as a walking or running person, moving car, train, and many other vibration sources, can be detected, localized, and classified. The sensor is based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR). Related sensing system components were designed and constructed, and the system was tested both in the laboratory and in the real deployment, with an 88 km telecom optical link, and the results are presented in this paper. A two-fiber sensor unit, with a double-sensing range was also designed, and its scheme is described. The unit was constructed and the initial measurement results are presented.
Collapse
|
9
|
Ortega-Gomez A, Loyez M, Lobry M, Chah K, Zubia J, Villatoro J, Caucheteur C. Plasmonic sensors based on tilted Bragg gratings in multicore optical fibers. OPTICS EXPRESS 2021; 29:18469-18480. [PMID: 34154102 DOI: 10.1364/oe.430181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Bare and gold-coated tilted fiber Bragg gratings (TFBGs) can nowadays be considered as a mature technology for volume and surface refractometric sensing, respectively. As for other technologies, a continuous effort is made towards the production of even more sensitive sensors, thereby enabling a high-resolution screening of the surroundings and the possible detection of rare events. To this aim, we study in this work the development of TFBG refractometers in 4-core fibers. In particular, we show that the refractometric sensitivity of the cut-off mode can reach 100 nm/RIU for a bare grating. Using another demodulation method, a tenfold sensitivity increase is obtained when tracking the extremum of the SPR (surface plasmon resonance) envelope for a gold-coated TFBG configuration. Immobilization of DNA probes was performed as a proof-of-concept to assess the high surface sensitivity of the device.
Collapse
|
10
|
Azkune M, Ayesta I, Ruiz-Rubio L, Arrospide E, Vilas-Vilela JL, Zubia J. Hydrogel-Core Microstructured Polymer Optical Fibers for Selective Fiber Enhanced Raman Spectroscopy. SENSORS 2021; 21:s21051845. [PMID: 33800805 PMCID: PMC7961415 DOI: 10.3390/s21051845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
A new approach of Fiber Enhanced Raman Spectroscopy (FERS) is described within this article based on the use of Hydrogel-Core microstructured Polymer Optical Fibers (HyC-mPOF). The incorporation of the hydrogel only on the core of the Hollow-Core microstructured Polymer Optical Fiber (HC-mPOF) enables to perform FERS measurements in a functionalized matrix, enabling high selectivity Raman measurements. The hydrogel formation was continuously monitored and quantified using a Principal Component Analysis verifying the coherence between the components and the Raman spectrum of the hydrogel. The performed measurements with high and low affinity target molecules prove the feasibility of the presented HyC-mPOF platform.
Collapse
Affiliation(s)
- Mikel Azkune
- Department of Electronic Technology, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), Torres Quevedo 1, 48013 Bilbao, Spain
- Correspondence: ; Tel.: +34-94301-8645
| | - Igor Ayesta
- Department of Applied Mathematics, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), Torres Quevedo 1, 48013 Bilbao, Spain; (I.A.); (E.A.)
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Research Group (LQM), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.R.-R.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Eneko Arrospide
- Department of Applied Mathematics, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), Torres Quevedo 1, 48013 Bilbao, Spain; (I.A.); (E.A.)
| | - Jose Luis Vilas-Vilela
- Macromolecular Chemistry Research Group (LQM), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.R.-R.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Joseba Zubia
- Department of Communications Engineering, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain;
| |
Collapse
|
11
|
Cano Perez JL, Gutiérrez-Gutiérrez J, Perezcampos Mayoral C, Pérez-Campos EL, Pina Canseco MDS, Tepech Carrillo L, Mayoral LPC, Vargas Treviño M, Apreza EL, Rojas Laguna R. Fiber Optic Sensors: A Review for Glucose Measurement. BIOSENSORS 2021; 11:61. [PMID: 33669087 PMCID: PMC7996499 DOI: 10.3390/bios11030061] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder, being globally one of the most deadly diseases. This disease requires continually monitoring of the body's glucose levels. There are different types of sensors for measuring glucose, most of them invasive to the patient. Fiber optic sensors have been proven to have advantages compared to conventional sensors and they have great potential for various applications, especially in the biomedical area. Compared to other sensors, they are smaller, easy to handle, mostly non-invasive, thus leading to a lower risk of infection, high precision, well correlated and inexpensive. The objective of this review article is to compare different types of fiber optic sensors made with different experimental techniques applied to biomedicine, especially for glucose sensing. Observations are made on the way of elaboration, as well as the advantages and disadvantages that each one could have in real applications.
Collapse
Affiliation(s)
- José Luis Cano Perez
- Doctorado in Biociencias, Facultad de Medicina y Cirugia, Universidad Autónoma “Benito Juárez” de Oaxaca. Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico;
| | - Jaime Gutiérrez-Gutiérrez
- Escuela de Sistemas Biologicos e Innovacion Tecnologica, Universidad Autónoma “Benito Juárez” de Oaxaca (ESBIT-UABJO), Av. Universidad S/N, Ex-Hacienda 5 Señores, Oaxaca de Juárez 68120, Mexico; (L.T.C.); (M.V.T.); (E.L.A.)
| | - Christian Perezcampos Mayoral
- Doctorado in Biociencias, Facultad de Medicina y Cirugia, Universidad Autónoma “Benito Juárez” de Oaxaca. Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico;
| | - Eduardo L. Pérez-Campos
- Facultad de Medicina y Cirugia, Universidad Autónoma “Benito Juárez” de Oaxaca. Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico; (E.L.P.-C.); (M.d.S.P.C.); (L.P.-C.M.)
| | - Maria del Socorro Pina Canseco
- Facultad de Medicina y Cirugia, Universidad Autónoma “Benito Juárez” de Oaxaca. Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico; (E.L.P.-C.); (M.d.S.P.C.); (L.P.-C.M.)
| | - Lorenzo Tepech Carrillo
- Escuela de Sistemas Biologicos e Innovacion Tecnologica, Universidad Autónoma “Benito Juárez” de Oaxaca (ESBIT-UABJO), Av. Universidad S/N, Ex-Hacienda 5 Señores, Oaxaca de Juárez 68120, Mexico; (L.T.C.); (M.V.T.); (E.L.A.)
| | - Laura Pérez-Campos Mayoral
- Facultad de Medicina y Cirugia, Universidad Autónoma “Benito Juárez” de Oaxaca. Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico; (E.L.P.-C.); (M.d.S.P.C.); (L.P.-C.M.)
| | - Marciano Vargas Treviño
- Escuela de Sistemas Biologicos e Innovacion Tecnologica, Universidad Autónoma “Benito Juárez” de Oaxaca (ESBIT-UABJO), Av. Universidad S/N, Ex-Hacienda 5 Señores, Oaxaca de Juárez 68120, Mexico; (L.T.C.); (M.V.T.); (E.L.A.)
| | - Edmundo López Apreza
- Escuela de Sistemas Biologicos e Innovacion Tecnologica, Universidad Autónoma “Benito Juárez” de Oaxaca (ESBIT-UABJO), Av. Universidad S/N, Ex-Hacienda 5 Señores, Oaxaca de Juárez 68120, Mexico; (L.T.C.); (M.V.T.); (E.L.A.)
| | - Roberto Rojas Laguna
- Division de Ingenierias, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, Salamanca 36885, Mexico;
| |
Collapse
|
12
|
Okazaki T, Seto R, Watanabe T, Ueda A, Kuramitz H. U-Shaped Polymer Cladding and Hetero-Core Fiber Optic Sensors for Monitoring Scale Formation in Geothermal Brine. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1732400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Takuya Okazaki
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - Ryuichi Seto
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku, Toyama, Japan
| | - Tomoaki Watanabe
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - Akira Ueda
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku, Toyama, Japan
| | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
13
|
Sequeira F, Cennamo N, Rudnitskaya A, Nogueira R, Zeni L, Bilro L. D-Shaped POF Sensors for Refractive Index Sensing-The Importance of Surface Roughness. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2476. [PMID: 31151217 PMCID: PMC6603787 DOI: 10.3390/s19112476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 05/26/2023]
Abstract
In this study the influence of the surface roughness on the transmission capacities of D-shaped plastic optical fibers (POFs) and sensors performance was investigated. Five D-shaped POF sensors were produced and characterized for refractive index sensing between 1.33 and 1.41. The sensors were characterized using a low-cost optical sensing system based on the variation of the transmitted light though the POF with refractive index changes (RI). Higher surface roughness increases the scattering losses through the POF and influences the sensors' performance; therefore, a balance must be attained. Generally, the best performance was achieved when the sensing region was polished with P600 sandpaper as a final polishing step. Polishing with sandpapers of lower grit size resulted in lower scattering, higher linearity of the sensor response and generally lower performance for RI sensing. A sensor resolution of 10-3-10-4 RIU, dependent on the value of the external refractive index, was obtained through simple and low-cost manufacturing procedures. The obtained results show the importance of surface roughness in the development of POF sensors which can be used in several applications, such as for water quality assessment.
Collapse
Affiliation(s)
- Filipa Sequeira
- Instituto de Telecomunicações, 3810-193 Aveiro, Portugal.
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
- CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy.
| | - Alisa Rudnitskaya
- CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy.
| | - Lúcia Bilro
- Instituto de Telecomunicações, 3810-193 Aveiro, Portugal.
| |
Collapse
|