1
|
Skrzetuska E, Szablewska P. Textronic Solutions Used to Produce Layers Sensitive to Chemical Stimuli-Gas Sensors: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5893. [PMID: 37687586 PMCID: PMC10488809 DOI: 10.3390/ma16175893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Thanks to the intensive development of textronics, textronic applications are already visible in many areas of everyday life. Many researchers around the world have focused on the invention of textronic systems to increase security, create technological innovations and make everyday life easier and more interesting. Due to the wide use of chemical textile sensors, this review article lists scientific publications covering all types of wearable chemical sensors along with their latest developments. The latest developments from the last few years in moisture, pH, sweat and biomolecules sensors are described. In this review, greatest emphasis and detail was placed on textile gas sensors and their production methods. The use of, among others, graphene and zinc oxide grown on cotton fabric, colorimetric textiles based on halochromic dye, electronic graphene fabric based on lotus fibers and graphene oxide and zinc oxide nanorods were considered. Finally, this article summarizes our current knowledge on gas sensors, compares the detection properties of the presented projects and indicates future directions of development.
Collapse
Affiliation(s)
- Ewa Skrzetuska
- Faculty of Material Technologies and Textile Design, Institute of Material Science of Textiles and Polymer Composites, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland;
| | | |
Collapse
|
2
|
Yuan X, Li C, Yin X, Yang Y, Ji B, Niu Y, Ren L. Epidermal Wearable Biosensors for Monitoring Biomarkers of Chronic Disease in Sweat. BIOSENSORS 2023; 13:313. [PMID: 36979525 PMCID: PMC10045998 DOI: 10.3390/bios13030313] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biological information detection technology is mainly used for the detection of physiological and biochemical parameters closely related to human tissues and organ lesions, such as biomarkers. This technology has important value in the clinical diagnosis and treatment of chronic diseases in their early stages. Wearable biosensors can be integrated with the Internet of Things and Big Data to realize the detection, transmission, storage, and comprehensive analysis of human physiological and biochemical information. This technology has extremely wide applications and considerable market prospects in frontier fields including personal health monitoring, chronic disease diagnosis and management, and home medical care. In this review, we systematically summarized the sweat biomarkers, introduced the sweat extraction and collection methods, and discussed the application and development of epidermal wearable biosensors for monitoring biomarkers in sweat in preclinical research in recent years. In addition, the current challenges and development prospects in this field were discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xu Yin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yinbo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Li Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
3
|
Flexible Ring Sensor Array and Machine Learning Model for the Early Blood Leakage Detection during Dialysis. Processes (Basel) 2022. [DOI: 10.3390/pr10112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Severe blood leakage resulting from the detachment of dialysis tubing is often difficult to detect by nurses in busy clinics. This paper presents a flexible blood leakage detection system featuring a ring-light sensor array with an operating wavelength of 500–700 nm, which is held in place by the gauze covering the dialysis puncture site. A ring-light sensor is connected to a bidirectional hetero-associative memory network, which interprets detected changes in signal strength, the output signal of which is transmitted via WiFi to a server at the nursing station where a machine learning algorithm determines whether blood leakage has occurred. The compact design of this early warning system greatly enhances the comfort and mobility of patients undergoing dialysis. The efficacy of the proposed system was demonstrated in experiments involving artificial blood.
Collapse
|
4
|
Development of a textile based protein sensor for monitoring the healing progress of a wound. Sci Rep 2022; 12:7972. [PMID: 35562402 PMCID: PMC9106706 DOI: 10.1038/s41598-022-11982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
This article focuses on the design and fabrication of flexible textile-based protein sensors to be embedded in wound dressings. Chronic wounds require continuous monitoring to prevent further complications and to determine the best course of treatment in the case of infection. As proteins are essential for the progression of wound healing, they can be used as an indicator of wound status. Through measuring protein concentrations, the sensor can assess and monitor the wound condition continuously as a function of time. The protein sensor consists of electrodes that are directly screen printed using both silver and carbon composite inks on polyester nonwoven fabric which was deliberately selected as this is one of the common backing fabric types currently used in wound dressings. These sensors were experimentally evaluated and compared to each other by using albumin protein solution of pH 7. A comprehensive set of cyclic voltammetry measurements was used to determine the optimal sensor design the measurement of protein in solution. As a result, the best sensor design is comprised of silver conductive tracks but a carbon layer as the working and counter electrodes at the interface zone. This design prevents the formation of silver dioxide and protects the sensor from rapid decay, which allows for the recording of consecutive measurements using the same sensor. The chosen printed protein sensor was able to detect bovine serum albumin at concentrations ranging from 30 to 0.3 mg/mL with a sensitivity of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.0026 \mu $$\end{document}0.0026μA/M. Further testing was performed to assess the sensor’s ability to identify BSA from other interferential substances usually present in wound fluids and the results show that it can be distinguishable.
Collapse
|
5
|
Sinha A, Dhanjai, Stavrakis AK, Stojanović GM. Textile-based electrochemical sensors and their applications. Talanta 2022; 244:123425. [PMID: 35397323 DOI: 10.1016/j.talanta.2022.123425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Textile and their composite-based functional sensors are extensively acknowledged and preferred detection platforms in recent times. Developing suitable methodologies for fabricating textile sensors can be achieved either by integration of conductive fibers and yarns into textiles using technologies such as weaving, knitting and embroidery; or by functionalization of textile materials with conductive nanomaterials/inks using printing or coating methods. Textile materials are gaining enormous attention for fabricating soft lab-on-fabric devices due to their unique features such as high flexibility, wear and wash resistance, mechanical strength and promising sensing performances. Owing to these collective properties, textile-based electrochemical transducers are now showcasing rapid and accurate electrical measurements towards real time point-of-care diagnostics and environmental monitoring applications. The present review provides a brief overview of key progress made in the field of developing textile materials and their composites-based electrochemical sensors and biosensors in recent years where electrode configurations are specifically based on either natural or synthetic fabrics. Different ways to fabricate and functionalize textiles for their application in electrochemical analysis are briefly discussed. The review ends with a conclusive note focusing on the current challenges in the fabrication of textile-based stable electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- Ankita Sinha
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia.
| | - Dhanjai
- BioSense Institute, Dr Zorana Đinđića 1, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Adrian K Stavrakis
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| | - Goran M Stojanović
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| |
Collapse
|
6
|
Agustini D, Caetano FR, Quero RF, Fracassi da Silva JA, Bergamini MF, Marcolino-Junior LH, de Jesus DP. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4830-4857. [PMID: 34647544 DOI: 10.1039/d1ay01337h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic devices based on textile threads have interesting advantages when compared to systems made with traditional materials, such as polymers and inorganic substrates (especially silicon and glass). One of these significant advantages is the device fabrication process, made more cheap and simple, with little or no microfabrication apparatus. This review describes the fundamentals, applications, challenges, and prospects of microfluidic devices fabricated with textile threads. A wide range of applications is discussed, integrated with several analysis methods, such as electrochemical, colorimetric, electrophoretic, chromatographic, and fluorescence. Additionally, the integration of these devices with different substrates (e.g., 3D printed components or fabrics), other devices (e.g., smartphones), and microelectronics is described. These combinations have allowed the construction of fully portable devices and consequently the development of point-of-care and wearable analytical systems.
Collapse
Affiliation(s)
- Deonir Agustini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Fábio Roberto Caetano
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Reverson Fernandes Quero
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
| | - José Alberto Fracassi da Silva
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| | - Márcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Dosil Pereira de Jesus
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| |
Collapse
|
7
|
Hasan MM, Hossain MM. Nanomaterials-patterned flexible electrodes for wearable health monitoring: a review. JOURNAL OF MATERIALS SCIENCE 2021; 56:14900-14942. [PMID: 34219807 PMCID: PMC8237560 DOI: 10.1007/s10853-021-06248-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACT Electrodes fabricated on a flexible substrate are a revolutionary development in wearable health monitoring due to their lightweight, breathability, comfort, and flexibility to conform to the curvilinear body shape. Different metallic thin-film and plastic-based substrates lack comfort for long-term monitoring applications. However, the insulating nature of different polymer, fiber, and textile substrates requires the deposition of conductive materials to render interactive functionality to substrates. Besides, the high porosity and flexibility of fiber and textile substrates pose a great challenge for the homogenous deposition of active materials. Printing is an excellent process to produce a flexible conductive textile electrode for wearable health monitoring applications due to its low cost and scalability. This article critically reviews the current state of the art of different textile architectures as a substrate for the deposition of conductive nanomaterials. Furthermore, recent progress in various printing processes of nanomaterials, challenges of printing nanomaterials on textiles, and their health monitoring applications are described systematically.
Collapse
Affiliation(s)
- Md Mehdi Hasan
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203 Bangladesh
- UNAM – National Nanotechnology Research Center and, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
| | - Md Milon Hossain
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203 Bangladesh
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, 27606 USA
| |
Collapse
|
8
|
Pandala N, Haywood S, LaScola MA, Day A, Leckron J, Lavik E. Screen Printing to Create 3D Tissue Models. ACS APPLIED BIO MATERIALS 2020; 3:8113-8120. [PMID: 35019551 DOI: 10.1021/acsabm.0c01256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
3D printing has revolutionized making tissue models, but the instruments are often quite expensive, and the approach can involve heat and/or shear forces that can damage cells. As a complement to more traditional 3D printing approaches, we looked at screen printing. Screen printing is an additive manufacturing technique used to pattern inks through screens supporting patterns onto different surfaces. It has a wide range of applications ranging from traditional printing to printing electric circuit boards. Taking cues from this we have developed a process of screen printing live cells along with a suitable scaffold on to different surfaces to generate in vitro models. The process is not only inexpensive and simple to use, but it also offers a wide range of advantages like the ability to use a range of bioinks limited only by their gelation time, printing on different surfaces, and the ability to autoclave all of the major components. In this paper, we present the screen assembly and the setup we used to print the cells along with the resolution and limits of features printed and the effect of the printing on the cells.
Collapse
Affiliation(s)
- Narendra Pandala
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Sydney Haywood
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Michael A LaScola
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Adam Day
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Joshua Leckron
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| | - Erin Lavik
- Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Piscataway Territories, Maryland 21250, United States
| |
Collapse
|
9
|
Huang BR, Kathiravan D, Wu CW, Yang WL. Superficial Edge Effect of N 2-Doped Nanodiamond on the Highly Stable Nonenzymatic Glucose Detection Properties of Dispersed Graphene Flakes/Ni Nanostructures. ACS APPLIED BIO MATERIALS 2020; 3:5966-5973. [DOI: 10.1021/acsabm.0c00639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bohr-Ran Huang
- Graduate Institute of Electro-Optical Engineering and Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Deepa Kathiravan
- Graduate Institute of Electro-Optical Engineering and Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Che-Wei Wu
- Graduate Institute of Electro-Optical Engineering and Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Wen-Luh Yang
- Department of Electronic Engineering, Feng Chia University, Taichung 407, Taiwan
| |
Collapse
|
10
|
Lee SH, Lee S. Cantilever Type Acceleration Sensors Made by Roll-to-Roll Slot-Die Coating. SENSORS 2020; 20:s20133748. [PMID: 32635459 PMCID: PMC7374456 DOI: 10.3390/s20133748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022]
Abstract
This paper presents the fabrication by means of roll-to-roll slot-die coating and characterization of air gap-based cantilever type capacitive acceleration sensors. As the mass of the sensor moves in the opposite direction of the acceleration, a capacitance change occurs. The sensor is designed to have a six layers structure with an air gap. Fabrication of the air gap and cantilever was enabled by coating and removing water-soluble PVA. The bottom electrode, the dielectric layer, and the sacrificial layer were formed using the roll-to-roll slot-die coating technique. The spacer, the top electrode, and the structural layer were formed by spin coating. Several kinds of experiments were conducted for characterization of the fabricated sensor samples. Experimental results show that accelerations of up to 3.6 g can be sensed with an average sensitivity of 0.00856 %/g.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul 05029, Korea;
| | - Sangyoon Lee
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-3731
| |
Collapse
|
11
|
Koshi T, Nomura KI, Yoshida M. Resistance Reduction of Conductive Patterns Printed on Textile by Curing Shrinkage of Passivation Layers. MICROMACHINES 2020; 11:mi11060539. [PMID: 32466466 PMCID: PMC7346002 DOI: 10.3390/mi11060539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 01/30/2023]
Abstract
Directly printing conductive ink on textiles is simple and compatible with the conventional electronics manufacturing process. However, the conductive patterns thus formed often show high initial resistance and significant resistance increase due to tensile deformation. Achieving conductive patterns with low initial resistance and reduced deformation-induced resistance increase is a significant challenge in the field of electronic textiles (e-textiles). In this study, the passivation layers printed on conductive patterns, which are necessary for practical use, were examined as a possible solution. Specifically, the reduction of the initial resistance and deformation-induced resistance increase, caused by the curing shrinkage of passivation layers, were theoretically and experimentally investigated. In the theoretical analysis, to clarify the mechanism of the reduction of deformation-induced resistance increase, crack propagation in conductive patterns was analyzed. In the experiments, conductive patterns with and without shrinking passivation layers (polydimethylsiloxane) cured at temperatures of 20–120 °C were prepared, and the initial resistances and resistance increases due to cyclic tensile and washing in each case were compared. As a result, the initial resistance was reduced further by the formation of shrinking passivation layers cured at higher temperatures, and reduced to 0.45 times when the curing temperature was 120 °C. The cyclic tensile and washing tests confirmed a 0.48 and a 0.011 times reduction of resistance change rate after the 100th elongation cycle (10% in elongation rate) and the 10th washing cycle, respectively, by comparing the samples with and without shrinking passivation layers cured at 120 °C.
Collapse
|
12
|
Kamarudin SF, Mustapha M, Kim JK. Green Strategies to Printed Sensors for Healthcare Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1729180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siti Fatimah Kamarudin
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Mariatti Mustapha
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
13
|
Koshi T, Nomura KI, Yoshida M. Requirements for Durability Improvement of Conductive Patterns Permeated in Textiles under Cyclic Tensile Deformation. MICROMACHINES 2019; 10:E721. [PMID: 31731558 PMCID: PMC6915606 DOI: 10.3390/mi10110721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023]
Abstract
Conductive patterns on textiles are one of the key components for electronic textiles (E-textiles). The patterns with deeper permeation of inks into the textiles show better durability against cyclic tensile deformation. However, other requirements for improving the durability and the behavior of resistance under deformation are still unclear. In this study, the resistance during cyclic tensile deformation was measured with changing conditions, and the resistance variation was analyzed while considering the stress variation. Silver inks were printed on a plain weave, and the pattern width and tensile direction against weft yarns were changed. Measurements confirmed that the resistance increased less with wider pattern widths and when the tensile direction was horizontal to the axis of the weft yarns. Through scanning electron microscopy (SEM) observation, we also confirmed that the growth rate of cracks, at the crossing point of yarns, was changed by the tensile direction. These results indicate that the durability is improved when the electricity path redundancy within the pattern is robust, and the crack growth rate at the yarn crossing points is low. The analysis also confirmed both increasing and decreasing behavior of resistance during stretching in the cyclic tensile deformation, indicating the behavior results from the stress variation of a plain weave.
Collapse
Affiliation(s)
- Tomoya Koshi
- Sensing System Research Center (SSRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan (M.Y.)
| | | | | |
Collapse
|
14
|
Takei Y, Nomura KI, Horii Y, Zymelka D, Ushijima H, Kobayashi T. Fabrication of Simultaneously Implementing "Wired Face-Up and Face-Down Ultrathin Piezoresistive Si Chips" on a Film Substrate by Screen-Offset Printing. MICROMACHINES 2019; 10:mi10090563. [PMID: 31454906 PMCID: PMC6780128 DOI: 10.3390/mi10090563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/02/2022]
Abstract
We realized the implementation of an ultrathin piezoresistive Si chip and stretchable printed wires on a flexible film substrate using simple screen-offset printing technology. This process does not require a special MEMS fabrication equipment and is applicable to face-up chips where electrodes are formed on the top surface of the chip, as well as to face-down chips where electrodes are formed on the bottom surface of the chip. This fabrication process is quite useful in the field of flexible hybrid electronics (FHE) as a method for mounting and wiring electronic components on a flexible substrate. In this study, we confirmed that face-up and face-down chips could be mounted on polyimide film tape. Furthermore, it was confirmed that the two types of chips could be simultaneously mounted even if they exist on the same substrate. Five-μm-thick piezoresistive Si chips were transferred and wired on a polyimide film tape using screen-offset printing, and a band-plaster type blood pulse sensor was fabricated. Moreover, we successfully demonstrated that the blood pulse could be measured with neck, inner elbow, wrist, and ankle.
Collapse
Affiliation(s)
- Yusuke Takei
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan.
| | - Ken-Ichi Nomura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Yoshinori Horii
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Daniel Zymelka
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Hirobumi Ushijima
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Takeshi Kobayashi
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| |
Collapse
|
15
|
Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2019; 39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate the market currently, to newly emerging wearable and implantable devices that can provide continuous monitoring. Soft and flexible materials are playing a key role in propelling these trends towards real-time and remote health monitoring. Affinity biosensors have the capability to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic diseases by the detection of biomarkers using affinity interactions. This review tracks the evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable devices enabled by soft and flexible materials. Initially, we highlight conventional affinity sensors exploiting membrane and paper materials which have been so successfully applied in point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-based devices. We then turn our attention to the multifarious polymer designs that provide both the base materials for sensor designs, such as PDMS, and more advanced functionalised materials that are capable of both recognition and transduction, such as conducting and molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible material-based affinity sensors, classified as flexible and skin-mountable, textile materials-based and contact lens-based affinity sensors. In the final sections, we explore the possibilities for implantable/injectable soft and flexible material-based affinity sensors, including hydrogels, microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust that this review will help pull together the many technological streams that are contributing to the field.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
16
|
Yang G, Pang G, Pang Z, Gu Y, Mantysalo M, Yang H. Non-Invasive Flexible and Stretchable Wearable Sensors With Nano-Based Enhancement for Chronic Disease Care. IEEE Rev Biomed Eng 2018; 12:34-71. [PMID: 30571646 DOI: 10.1109/rbme.2018.2887301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advances in flexible and stretchable electronics, functional nanomaterials, and micro/nano manufacturing have been made in recent years. These advances have accelerated the development of wearable sensors. Wearable sensors, with excellent flexibility, stretchability, durability, and sensitivity, have attractive application prospects in the next generation of personal devices for chronic disease care. Flexible and stretchable wearable sensors play an important role in endowing chronic disease care systems with the capability of long-term and real-time tracking of biomedical signals. These signals are closely associated with human body chronic conditions, such as heart rate, wrist/neck pulse, blood pressure, body temperature, and biofluids information. Monitoring these signals with wearable sensors provides a convenient and non-invasive way for chronic disease diagnoses and health monitoring. In this review, the applications of wearable sensors in chronic disease care are introduced. In addition, this review exploits a comprehensive investigation of requirements for flexibility and stretchability, and methods of nano-based enhancement. Furthermore, recent progress in wearable sensors-including pressure, strain, electrophysiological, electrochemical, temperature, and multifunctional sensors-is presented. Finally, opening research challenges and future directions of flexible and stretchable sensors are discussed.
Collapse
|
17
|
Towards The Internet-of-Smart-Clothing: A Review on IoT Wearables and Garments for Creating Intelligent Connected E-Textiles. ELECTRONICS 2018. [DOI: 10.3390/electronics7120405] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Technology has become ubiquitous, it is all around us and is becoming part of us. Together with the rise of the Internet-of-Things (IoT) paradigm and enabling technologies (e.g., Augmented Reality (AR), Cyber-Physical Systems, Artificial Intelligence (AI), blockchain or edge computing), smart wearables and IoT-based garments can potentially have a lot of influence by harmonizing functionality and the delight created by fashion. Thus, smart clothes look for a balance among fashion, engineering, interaction, user experience, cybersecurity, design and science to reinvent technologies that can anticipate needs and desires. Nowadays, the rapid convergence of textile and electronics is enabling the seamless and massive integration of sensors into textiles and the development of conductive yarn. The potential of smart fabrics, which can communicate with smartphones to process biometric information such as heart rate, temperature, breathing, stress, movement, acceleration, or even hormone levels, promises a new era for retail. This article reviews the main requirements for developing smart IoT-enabled garments and shows smart clothing potential impact on business models in the medium-term. Specifically, a global IoT architecture is proposed, the main types and components of smart IoT wearables and garments are presented, their main requirements are analyzed and some of the most recent smart clothing applications are studied. In this way, this article reviews the past and present of smart garments in order to provide guidelines for the future developers of a network where garments will be connected like other IoT objects: the Internet-of-Smart-Clothing.
Collapse
|