1
|
Di Santo A, Accinno M, Errante F, Capone M, Vultaggio A, Simoncini E, Zipoli G, Cosmi L, Annunziato F, Rovero P, Real Fernandez F. Quantitative evaluation of adalimumab and anti-adalimumab antibodies in sera using a surface plasmon resonance biosensor. Clin Biochem 2024; 133-134:110838. [PMID: 39489392 DOI: 10.1016/j.clinbiochem.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVES Monitoring of therapeutic antibody adalimumab (ADL) and of anti-adalimumab antibodies (AAA) in autoimmune diseases patients' sera has achieved increased attention since several studies showed a correlation between AAA levels and treatment failure. We evaluated a new surface plasmon resonance (SPR)-based method that, with slight changes in the analysis condition and in the ligand immobilized on the chip surface, allows to monitor both AAA and ADL. This new label-free method does not require sample pretreatments, and it is fully automated, only requiring the preparation of the chip, which can be used for multiple analysis, and the preparation of the sample sets. DESIGN & METHODS Sera from ADL-treated patients (n = 47) and controls (n = 13) were included in this study. Quantitative analysis of AAA and ADL were performed separately using a new SPR-biosensor, and a commercially available ELISA kit. Agreement was defined by overall, positive, and negative agreement. Wilson Score was used to calculate confidence intervals (CI) on binomial probability and Spearman's rho and Bland-Altman test were used to assess correlations. RESULTS ELISA and SPR-based assay were able to identify circulating AAA in ADL-treated patients, with the percentage of positivity varying among the methods, with an overall agreement of 79%. AAA were detected in 18 (38 %) out of the 47 treated patients by the ELISA whereas SPR-based assay detected 10 (21 %) out of 47 samples. CONCLUSIONS Real-time label free SPR-based protocol for both AAA and ADL quantification has been set-up. Although quantitative differences were observed when compared with ELISA, the agreement among methodologies was high, particularly for ADL quantification within the therapeutic window of the drug.
Collapse
Affiliation(s)
- Andrea Di Santo
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Matteo Accinno
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fosca Errante
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Laboratory Medicine, Azienda Usl Toscana Centro, Florence, Italy
| | - Alessandra Vultaggio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Eleonora Simoncini
- Clinical Trials Task Force - Ethics and Care Unit, Azienda Usl Toscana Centro, Florence, Italy
| | - Giuditta Zipoli
- Clinical Trials Task Force - Ethics and Care Unit, Azienda Usl Toscana Centro, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy.
| | - Feliciana Real Fernandez
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino (FI) I-50019, Italy.
| |
Collapse
|
2
|
Garzon V, Salvador JP, Marco MP, G.-Pinacho D, Bustos RH. Development and ELISA Characterization of Antibodies against the Colistin, Vancomycin, Daptomycin, and Meropenem: A Therapeutic Drug Monitoring Approach. Antibiotics (Basel) 2024; 13:600. [PMID: 39061282 PMCID: PMC11273741 DOI: 10.3390/antibiotics13070600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
More than 70% of bacteria are resistant to all or nearly all known antimicrobials, creating the need for the development of new types of antimicrobials or the use of "last-line" antimicrobial therapies for the treatment of multi-resistant bacteria. These antibiotics include Glycopeptide (Vancomycin), Polymyxin (Colistin), Lipopeptide (Daptomycin), and Carbapenem (Meropenem). However, due to the toxicity of these types of molecules, it is necessary to develop new rapid methodologies to be used in Therapeutic Drug Monitoring (TDM). TDM could improve patient outcomes and reduce healthcare costs by enabling a favorable clinical outcome. In this way, personalized antibiotic therapy emerges as a viable option, offering optimal dosing for each patient according to pharmacokinetic (PK) and pharmacodynamic (PD) parameters. Various techniques are used for this monitoring, including high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and immunoassays. The objective of this study is the development and characterization by ELISA of specific polyclonal antibodies for the recognition of the antibiotics Vancomycin (glycopeptide), Colistin (polymyxin), Daptomycin (lipopeptide), and Meropenem (carbapenem) for future applications in the monitoring of these antibiotics in different fluids, such as human plasma. The developed antibodies are capable of recognizing the antibiotic molecules with good detectability, showing an IC50 of 0.05 nM for Vancomycin, 7.56 nM for Colistin, 183.6 nM for Meropenem, and 13.82 nM for Daptomycin. These antibodies offer a promising tool for the precise and effective therapeutic monitoring of these critical antibiotics, potentially enhancing treatment efficacy and patient safety.
Collapse
Affiliation(s)
- Vivian Garzon
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia;
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - J.-Pablo Salvador
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08034 Barcelona, Spain; (J.-P.S.); (M.-P.M.)
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
| | - M.-Pilar Marco
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08034 Barcelona, Spain; (J.-P.S.); (M.-P.M.)
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
| | - Daniel G.-Pinacho
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
- Clínica Universidad de La Sabana, Chía 140013, Colombia
| |
Collapse
|
3
|
Shen J, Ma Z, Xu J, Xue T, Lv X, Zhu G, Huang B. Exosome Isolation and Detection: From Microfluidic Chips to Nanoplasmonic Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38676635 DOI: 10.1021/acsami.3c19396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Exosomes are becoming more widely acknowledged as significant circulating indicators for the prognosis and diagnosis of cancer. Circulating exosomes are essential to the development and spread of cancer, according to a growing body of research. Using existing technology, characterizing exosomes is quite difficult. Therefore, a direct, sensitive, and targeted approach to exosome detection will aid in illness diagnosis and prognosis. The review discusses the new strategies for exosome isolation and detection technologies from microfluidic chips to nanoplasmonic biosensors, analyzing the advantages and limitations of these new technologies. This review serves researchers to better understand exosome isolation and detection methods and to help develop better exosome isolating and detecting devices for clinical applications.
Collapse
Affiliation(s)
- Jianing Shen
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Zhengtai Ma
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Jiaqi Xu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Tianhao Xue
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xiaoqing Lv
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
| | - Guixian Zhu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Beiju Huang
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Çapkın E, Kutlu A, Yüce M. Repurposing Fc gamma receptor I (FcγRI, CD64) for site-oriented monoclonal antibody capture: A proof-of-concept study for real-time detection of tumor necrosis factor-alpha (TNF -α). Heliyon 2023; 9:e19469. [PMID: 37809995 PMCID: PMC10558606 DOI: 10.1016/j.heliyon.2023.e19469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
The controlled orientation of biomolecules on the sensor surface is crucial for achieving high sensitivity and accurate detection of target molecules in biosensing. FcγRI is an immune cell surface receptor for recognizing IgG-coated targets, such as opsonized pathogens or immune complexes. It plays a crucial role in T cell activation and internalization of the cargos, leading downstream signaling cascades. In this study, we repurposed the FcγRI as an analytical ligand molecule for site-oriented ADA capture, a monoclonal antibody-based biosimilar drug, on a plasmonic sensor surface and demonstrated the real-time detection of the corresponding analyte molecule, TNF-α. The study encompasses the analysis of comparative ligand behaviors on the surface, biosensor kinetics, concentration-dependent studies, and sensor specificity assays. The findings of this study suggest that FcγRI has a significant potential to serve as a universal ligand molecule for site-specific monoclonal antibody capture, and it can be used for biosensing studies, as it represents low nanomolar range affinity and excellent selectivity towards the target. However, there is still room for improvement in the surface stability and sensing response, and further studies are needed to reveal its performance on the monoclonal antibodies with various antigen binding sites and glycoforms.
Collapse
Affiliation(s)
- Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Aslı Kutlu
- Istinye University, Faculty of Natural Science and Engineering, 34396, Istanbul, Turkey
| | - Meral Yüce
- Imperial College London, Department of Bioengineering, SW7 2AZ, London, UK
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| |
Collapse
|
5
|
Luo YR, Chakraborty I, Lazar-Molnar E, Wu AHB, Lynch KL. Development of Label-Free Immunoassays as Novel Solutions for the Measurement of Monoclonal Antibody Drugs and Antidrug Antibodies. Clin Chem 2021; 66:1319-1328. [PMID: 32918468 DOI: 10.1093/clinchem/hvaa179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Immunoassays based on label-free technologies (label-free immunoassay [LFIA]) offer an innovative approach to clinical diagnostics and demonstrate great promise for therapeutic drug monitoring (TDM) of monoclonal antibody (mAb) drugs. An LFIA measures immunocomplex formation in real time and allows for quantification on initial binding rate, which facilitates fast measurement within a few minutes. METHODS Based on thin-film interferometry (TFI) technology, open-access LFIAs were developed for the quantification of the mAb drugs adalimumab (ADL) and infliximab (IFX) and for the detection of the antidrug antibodies (ADAs) to the mAb drugs (ADL-ADAs and IFX-ADAs). RESULTS The LFIAs for active mAb drugs (ADL and IFX) and for ADAs (ADL-ADAs and IFX-ADAs) were validated. The analytical measurement range (AMR) for both ADL and IFX was from 2 to 100 μg/mL. The AMR for ADL-ADAs was from 5 to 100 μg/mL and for IFX-ADAs was 10 to 100 μg/mL. In the comparison of LFIAs and reporter gene assays, the correlation coefficient was 0.972 for the quantification of ADL and 0.940 for the quantification of IFX. The concordance rate was 90% for the detection of ADL-ADAs and 76% for the detection of IFX-ADAs. CONCLUSIONS The LFIAs for active mAb drugs and ADAs were appropriate for the TDM of ADL and IFX. The TFI technology has unique advantages compared with other technologies used for the measurement of mAb drugs. Label-free technologies, especially those allowing for open-access LFIAs, have great potential for clinical diagnostics.
Collapse
Affiliation(s)
- Yiqi Ruben Luo
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | | | - Eszter Lazar-Molnar
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Alan H B Wu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
6
|
Muneer S, Ayoko GA, Islam N, Izake EL. Utilizing the thiol chemistry of biomolecules for the rapid determination of anti-TNF-α drug in blood. Talanta 2020; 208:120411. [DOI: 10.1016/j.talanta.2019.120411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 01/18/2023]
|
7
|
Ghorbani F, Abbaszadeh H, Mehdizadeh A, Ebrahimi-Warkiani M, Rashidi MR, Yousefi M. Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Mikrochim Acta 2019; 186:838. [DOI: 10.1007/s00604-019-3844-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
|
8
|
Garzón V, Pinacho DG, Bustos RH, Garzón G, Bustamante S. Optical Biosensors for Therapeutic Drug Monitoring. BIOSENSORS 2019; 9:E132. [PMID: 31718050 PMCID: PMC6955905 DOI: 10.3390/bios9040132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.
Collapse
Affiliation(s)
- Vivian Garzón
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Daniel G. Pinacho
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Rosa-Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Gustavo Garzón
- Faculty of Medicine, Universidad de La Sabana, Chía 140013, Colombia
| | - Sandra Bustamante
- Physics Department, the Centre for NanoHealth, Swansea University, Swansea SA2 8PP, UK
- Vedas, Corporación de Investigación e Innovación, Medellín 050001, Colombia
| |
Collapse
|
9
|
Sina AAI, Vaidyanathan R, Wuethrich A, Carrascosa LG, Trau M. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal Bioanal Chem 2019; 411:1311-1318. [PMID: 30719562 DOI: 10.1007/s00216-019-01608-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023]
Abstract
The development of a sensitive and specific detection platform for exosomes is highly desirable as they are believed to transmit vital tumour-specific information (mRNAs, microRNAs, and proteins) to remote cells for secondary metastasis. Herein, we report a simple method for the real-time and label-free detection of clinically relevant exosomes using a surface plasmon resonance (SPR) biosensor. Our method shows high specificity in detecting BT474 breast cancer cell-derived exosomes particularly from complex biological samples (e.g. exosome spiked in serum). This approach exhibits high sensitivity by detecting as low as 8280 exosomes/μL which may potentially be suitable for clinical analysis. We believe that this label-free and real-time method along with the high specificity and sensitivity may potentially be useful for clinical settings.
Collapse
Affiliation(s)
- Abu Ali Ibn Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ramanathan Vaidyanathan
- Biomedical Institute for Global Health Research & Technology, National University of Singapore, Singapore, 119228, Singapore
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura G Carrascosa
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|