1
|
Optical Coherence Tomography Angiography of the Intestine: How to Prevent Motion Artifacts in Open and Laparoscopic Surgery? Life (Basel) 2023; 13:life13030705. [PMID: 36983861 PMCID: PMC10055682 DOI: 10.3390/life13030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Introduction. The problem that limits the intraoperative use of OCTA for the intestinal circulation diagnostics is the low informative value of OCTA images containing too many motion artifacts. The aim of this study is to evaluate the efficiency and safety of the developed unit for the prevention of the appearance of motion artifacts in the OCTA images of the intestine in both open and laparoscopic surgery in the experiment; (2) Methods. A high-speed spectral-domain multimodal optical coherence tomograph (IAP RAS, Russia) operating at a wavelength of 1310 nm with a spectral width of 100 μm and a power of 2 mW was used. The developed unit was tested in two groups of experimental animals—on minipigs (group I, n = 10, open abdomen) and on rabbits (group II, n = 10, laparoscopy). Acute mesenteric ischemia was modeled and then 1 h later the small intestine underwent OCTA evaluation. A total of 400 OCTA images of the intact and ischemic small intestine were obtained and analyzed. The quality of the obtained OCTA images was evaluated based on the score proposed in 2020 by the group of Magnin M. (3) Results. Without stabilization, OCTA images of the intestine tissues were informative only in 32–44% of cases in open surgery and in 14–22% of cases in laparoscopic surgery. A vacuum bowel stabilizer with a pressure deficit of 22–25 mm Hg significantly reduced the number of motion artifacts. As a result, the proportion of informative OCTA images in open surgery increased up to 86.5% (Χ2 = 200.2, p = 0.001), and in laparoscopy up to 60% (Χ2 = 148.3, p = 0.001). (4) Conclusions. The used vacuum tissue stabilizer enabled a significant increase in the proportion of informative OCTA images by significantly reducing the motion artifacts.
Collapse
|
2
|
Yang L, Chen Y, Ling S, Wang J, Wang G, Zhang B, Zhao H, Zhao Q, Mao J. Research progress on the application of optical coherence tomography in the field of oncology. Front Oncol 2022; 12:953934. [PMID: 35957903 PMCID: PMC9358962 DOI: 10.3389/fonc.2022.953934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging technique which has become the “gold standard” for diagnosis in the field of ophthalmology. However, in contrast to the eye, nontransparent tissues exhibit a high degree of optical scattering and absorption, resulting in a limited OCT imaging depth. And the progress made in the past decade in OCT technology have made it possible to image nontransparent tissues with high spatial resolution at large (up to 2mm) imaging depth. On the one hand, OCT can be used in a rapid, noninvasive way to detect diseased tissues, organs, blood vessels or glands. On the other hand, it can also identify the optical characteristics of suspicious parts in the early stage of the disease, which is of great significance for the early diagnosis of tumor diseases. Furthermore, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This review summarizes the recent advances in the OCT area, which application in oncological diagnosis and treatment in different types: (1) superficial tumors:OCT could detect microscopic information on the skin’s surface at high resolution and has been demonstrated to help diagnose common skin cancers; (2) gastrointestinal tumors: OCT can be integrated into small probes and catheters to image the structure of the stomach wall, enabling the diagnosis and differentiation of gastrointestinal tumors and inflammation; (3) deep tumors: with the rapid development of OCT imaging technology, it has shown great potential in the diagnosis of deep tumors such in brain tumors, breast cancer, bladder cancer, and lung cancer.
Collapse
Affiliation(s)
- Linhai Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Yulun Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Shuting Ling
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Jing Wang
- Department of Imaging, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Guangxing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Bei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Hengyu Zhao
- Department of Imaging, School of Medicine, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Hengyu Zhao, ; Qingliang Zhao, ; Jingsong Mao,
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Hengyu Zhao, ; Qingliang Zhao, ; Jingsong Mao,
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, China
- Department of Radiology, Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, Xiamen, China
- *Correspondence: Hengyu Zhao, ; Qingliang Zhao, ; Jingsong Mao,
| |
Collapse
|
3
|
Kiseleva E, Ryabkov M, Baleev M, Bederina E, Shilyagin P, Moiseev A, Beschastnov V, Romanov I, Gelikonov G, Gladkova N. Prospects of Intraoperative Multimodal OCT Application in Patients with Acute Mesenteric Ischemia. Diagnostics (Basel) 2021; 11:705. [PMID: 33920827 PMCID: PMC8071199 DOI: 10.3390/diagnostics11040705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Despite the introduction of increasingly multifaceted diagnostic techniques and the general advances in emergency abdominal and vascular surgery, the outcome of treatment of patients with acute impaired intestinal circulation remains unsatisfactory. The non-invasive and high-resolution technique of optical coherence tomography (OCT) can be used intraoperatively to assess intestine viability and associated conditions that frequently emerge under conditions of impaired blood circulation. This study aims to demonstrate the effectiveness of multimodal (MM) OCT for intraoperative diagnostics of both the microstructure (cross-polarization OCT mode) and microcirculation (OCT angiography mode) of the small intestine wall in patients with acute mesenteric ischemia (AMI). METHODS AND PARTICIPANTS A total of 18 patients were enrolled in the study. Nine of them suffered from AMI in segments II-III of the superior mesenteric artery (AMI group), whereby the ischemic segments of the intestine were examined. Nine others were operated on for adenocarcinoma of the colon (control group), thus allowing areas of their normal small intestine to be examined for comparison. Data on the microstructure and microcirculation in the walls of the small intestine were obtained intraoperatively from the side of the serous membrane using the MM OCT system (IAP RAS, Russia) before bowel resection. The MM OCT data were compared with the results of histological examination. RESULTS The study finds that MM OCT visualized the damage to serosa, muscularis externa, and blood vessels localized in these layers in 100% of AMI cases. It also visualized the submucosa in 33.3% of AMI cases. The MM OCT images of non-ischemic (control group), viable ischemic, and necrotic small intestines (AMI group) differed significantly across stratification of the distinguishable layers, the severity of intermuscular fluid accumulations, and the type and density of the vasculature. CONCLUSION The MM OCT diagnostic procedure optimally meets the requirements of emergency surgery. Data on the microstructure and microcirculation of the intestinal wall can be obtained simultaneously in real time without requiring contrast agent injections. The depth of visualization of the intestinal wall from the side of the serous membrane is sufficient to assess the volume of the affected tissues. However, the methodology for obtaining MM OCT data needs to be improved to minimize the motion artefacts generated in actual clinical conditions.
Collapse
Affiliation(s)
- Elena Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia;
| | - Maxim Ryabkov
- Thermal Injury Group, University Clinic, Privolzhsky Research Medical University, 18/1 Verkhnevolzhskaya Naberezhnaja, 603155 Nizhny Novgorod, Russia;
| | - Mikhail Baleev
- City Clinical Hospital No.30, 85A Berezovskaya St., 605157 Nizhny Novgorod, Russia; (M.B.); (V.B.); (I.R.)
| | - Evgeniya Bederina
- The Department of Pathology, University Clinic, Privolzhsky Research Medical University, 18/1 Verkhnevolzhskaya Naberezhnaja, 603155 Nizhny Novgorod, Russia;
| | - Pavel Shilyagin
- Institute of Applied Physics of the RAS, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (P.S.); (A.M.); (G.G.)
| | - Alexander Moiseev
- Institute of Applied Physics of the RAS, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (P.S.); (A.M.); (G.G.)
| | - Vladimir Beschastnov
- City Clinical Hospital No.30, 85A Berezovskaya St., 605157 Nizhny Novgorod, Russia; (M.B.); (V.B.); (I.R.)
| | - Ivan Romanov
- City Clinical Hospital No.30, 85A Berezovskaya St., 605157 Nizhny Novgorod, Russia; (M.B.); (V.B.); (I.R.)
| | - Grigory Gelikonov
- Institute of Applied Physics of the RAS, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (P.S.); (A.M.); (G.G.)
| | - Natalia Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia;
| |
Collapse
|
4
|
Jansen SMA, van Berge Henegouwen MI, Gisbertz SS, van Leeuwen TG. Comment on the complex assessment of anastomosis' perfusion following esophagectomy: Set in stone? Eur J Surg Oncol 2020; 47:1493. [PMID: 33257082 DOI: 10.1016/j.ejso.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022] Open
Affiliation(s)
- Sanne Marie-Antoinette Jansen
- Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Department of Surgery, Department of Biomedical Engineering and Physics, Amsterdam, the Netherlands.
| | | | - Suzanne Sarah Gisbertz
- Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - Ton Gerard van Leeuwen
- Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Komada T, Tachi Y, Nagasaka K, Yamada S, Matsushima M, Sakaki Y, Naganawa S. A case of stent-graft implantation for postpancreaticoduodenectomy hemorrhage in a patient with a reconstructed gastric tube. Radiol Case Rep 2020; 15:2710-2713. [PMID: 33117472 PMCID: PMC7582049 DOI: 10.1016/j.radcr.2020.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/01/2022] Open
Abstract
In patients with a reconstructed gastric tube, the right gastroepiploic artery is a very important feeding artery of the tube, which must be preserved when performing a pancreaticoduodenectomy. A 76-year-old man with a reconstructed gastric tube underwent pancreaticoduodenectomy for distal bile duct carcinoma. On postoperative day 8, he had an arterial hemorrhage from a drain, apparently from a ligation of the anterior superior duodenal artery. He, therefore, underwent stent-graft placement in the gastroduodenal artery. The stent-grafts were temporarily occluded, and the gastric tube was necrotizing. However, thrombolytic therapy allowed the stent-grafts to reopen and prevented gastric tube necrosis. We believe our case of stent-graft implantation in the gastroduodenal artery is the first of this kind to successfully prevent lethal necrosis of the gastric tube.
Collapse
Affiliation(s)
- Tomohiro Komada
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yasushi Tachi
- Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden
| | - Ken Nagasaka
- Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Mie, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masaya Matsushima
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yutaro Sakaki
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
6
|
Comparison of Optical Imaging Techniques to Quantitatively Assess the Perfusion of the Gastric Conduit during Oesophagectomy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, four optical techniques—Optical Coherence Tomography, Sidestream Darkfield Microscopy, Laser Speckle Contrast Imaging, and Fluorescence Angiography (FA)—were compared on performing an intraoperative quantitative perfusion assessment of the gastric conduit during oesophagectomy. We hypothesised that the quantitative parameters show decreased perfusion towards the fundus in the gastric conduit and in patients with anastomotic leakage. In a prospective study in patients undergoing oesophagectomy with gastric conduit reconstruction, measurements were taken with all four optical techniques at four locations from the base towards the fundus in the gastric conduit (Loc1, Loc2, Loc3, Loc4). The primary outcome included 14 quantitative parameters and the anastomotic leakage rate. Imaging was performed in 22 patients during oesophagectomy. Ten out of 14 quantitative parameters significantly indicated a reduced perfusion towards the fundus of the gastric conduit. Anastomotic leakage occurred in 4/22 patients (18.4%). At Loc4, the FA quantitative values for “T1/2” and “mean slope” differed between patients with and without anastomotic leakage (p = 0.025 and p = 0.041, respectively). A quantitative perfusion assessment during oesophagectomy is feasible using optical imaging techniques, of which FA is the most promising for future research.
Collapse
|
7
|
Gong P, Almasian M, van Soest G, de Bruin DM, van Leeuwen TG, Sampson DD, Faber DJ. Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-34. [PMID: 32246615 PMCID: PMC7118361 DOI: 10.1117/1.jbo.25.4.040901] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Optical coherence tomography (OCT) provides cross-sectional and volumetric images of backscattering from biological tissue that reveal the tissue morphology. The strength of the scattering, characterized by an attenuation coefficient, represents an alternative and complementary tissue optical property, which can be characterized by parametric imaging of the OCT attenuation coefficient. Over the last 15 years, a multitude of studies have been reported seeking to advance methods to determine the OCT attenuation coefficient and developing them toward clinical applications. AIM Our review provides an overview of the main models and methods, their assumptions and applicability, together with a survey of preclinical and clinical demonstrations and their translation potential. RESULTS The use of the attenuation coefficient, particularly when presented in the form of parametric en face images, is shown to be applicable in various medical fields. Most studies show the promise of the OCT attenuation coefficient in differentiating between tissues of clinical interest but vary widely in approach. CONCLUSIONS As a future step, a consensus on the model and method used for the determination of the attenuation coefficient is an important precursor to large-scale studies. With our review, we hope to provide a basis for discussion toward establishing this consensus.
Collapse
Affiliation(s)
- Peijun Gong
- The University of Western Australia, Department of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, Perth, Western Australia, Australia
- Address all correspondence to Peijun Gong, E-mail:
| | - Mitra Almasian
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Gijs van Soest
- Erasmus MC, University Medical Center Rotterdam, Department of Cardiology, Rotterdam, The Netherlands
| | - Daniel M. de Bruin
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Ton G. van Leeuwen
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - David D. Sampson
- The University of Western Australia, Department of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, Perth, Western Australia, Australia
- University of Surrey, Surrey Biophotonics, Guildford, Surrey, United Kingdom
| | - Dirk J. Faber
- University of Amsterdam, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Almasian M, Wilk LS, Bloemen PR, van Leeuwen TG, ter Laan M, Aalders MCG. Pilot feasibility study of in vivo intraoperative quantitative optical coherence tomography of human brain tissue during glioma resection. JOURNAL OF BIOPHOTONICS 2019; 12:e201900037. [PMID: 31245913 PMCID: PMC7065626 DOI: 10.1002/jbio.201900037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 05/21/2023]
Abstract
This study investigates the feasibility of in vivo quantitative optical coherence tomography (OCT) of human brain tissue during glioma resection surgery in six patients. High-resolution detection of glioma tissue may allow precise and thorough tumor resection while preserving functional brain areas, and improving overall survival. In this study, in vivo 3D OCT datasets were collected during standard surgical procedure, before and after partial resection of the tumor, both from glioma tissue and normal parenchyma. Subsequently, the attenuation coefficient was extracted from the OCT datasets using an automated and validated algorithm. The cortical measurements yield a mean attenuation coefficient of 3.8 ± 1.2 mm-1 for normal brain tissue and 3.6 ± 1.1 mm-1 for glioma tissue. The subcortical measurements yield a mean attenuation coefficient of 5.7 ± 2.1 and 4.5 ± 1.6 mm-1 for, respectively, normal brain tissue and glioma. Although the results are inconclusive with respect to trends in attenuation coefficient between normal and glioma tissue due to the small sample size, the results are in the range of previously reported values. Therefore, we conclude that the proposed method for quantitative in vivo OCT of human brain tissue is feasible during glioma resection surgery.
Collapse
Affiliation(s)
- Mitra Almasian
- Department of Biomedical Engineering & PhysicsAmsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Cancer Center AmsterdamAmsterdamThe Netherlands
| | - Leah S. Wilk
- Department of Biomedical Engineering & PhysicsAmsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Cancer Center AmsterdamAmsterdamThe Netherlands
| | - Paul R. Bloemen
- Department of Biomedical Engineering & PhysicsAmsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Cancer Center AmsterdamAmsterdamThe Netherlands
| | - Ton G van Leeuwen
- Department of Biomedical Engineering & PhysicsAmsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Cancer Center AmsterdamAmsterdamThe Netherlands
| | - Mark ter Laan
- Department of NeurosurgeryRadboud University Medical CenterNijmegenthe Netherlands
| | - Maurice C. G. Aalders
- Department of Biomedical Engineering & PhysicsAmsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Cancer Center AmsterdamAmsterdamThe Netherlands
| |
Collapse
|