1
|
Mousavi ZE, Hunt K, Koolman L, Butler F, Fanning S. Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms 2023; 11:1379. [PMID: 37374881 DOI: 10.3390/microorganisms11061379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The powdered formula market is large and growing, with sales and manufacturing increasing by 120% between 2012 and 2021. With this growing market, there must come an increasing emphasis on maintaining a high standard of hygiene to ensure a safe product. In particular, Cronobacter species pose a risk to public health through their potential to cause severe illness in susceptible infants who consume contaminated powdered infant formula (PIF). Assessment of this risk is dependent on determining prevalence in PIF-producing factories, which can be challenging to measure with the heterogeneity observed in the design of built process facilities. There is also a potential risk of bacterial growth occurring during rehydration, given the observed persistence of Cronobacter in desiccated conditions. In addition, novel detection methods are emerging to effectively track and monitor Cronobacter species across the food chain. This review will explore the different vehicles that lead to Cronobacter species' environmental persistence in the food production environment, as well as their pathogenicity, detection methods and the regulatory framework surrounding PIF manufacturing that ensures a safe product for the global consumer.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh Mousavi
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- Department of Food Science and Engineering, Faculties of Agriculture and Natural Resources, University of Tehran, Karaj 6719418314, Iran
| | - Kevin Hunt
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Leonard Koolman
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Francis Butler
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Yi M, He P, Li J, Zhang J, Lin L, Wang L, Zhao L. A portable toolbox based on time-resolved fluoroimmunoassay and immunomagnetic separation for Cronobacter sakazakii on-site detection in dairy. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers (Basel) 2022; 14:polym14061221. [PMID: 35335551 PMCID: PMC8956086 DOI: 10.3390/polym14061221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an important branch of science in therapies known as “nanomedicine” and is the junction of various fields such as material science, chemistry, biology, physics, and optics. Nanomaterials are in the range between 1 and 100 nm in size and provide a large surface area to volume ratio; thus, they can be used for various diseases, including cardiovascular diseases, cancer, bacterial infections, and diabetes. Nanoparticles play a crucial role in therapy as they can enhance the accumulation and release of pharmacological agents, improve targeted delivery and ultimately decrease the intensity of drug side effects. In this review, we discussthe types of nanomaterials that have various biomedical applications. Biomolecules that are often conjugated with nanoparticles are proteins, peptides, DNA, and lipids, which can enhance biocompatibility, stability, and solubility. In this review, we focus on bioconjugation and nanoparticles and also discuss different types of nanoparticles including micelles, liposomes, carbon nanotubes, nanospheres, dendrimers, quantum dots, and metallic nanoparticles and their crucial role in various diseases and clinical applications. Additionally, we review the use of nanomaterials for bio-imaging, drug delivery, biosensing tissue engineering, medical devices, and immunoassays. Understandingthe characteristics and properties of nanoparticles and their interactions with the biological system can help us to develop novel strategies for the treatment, prevention, and diagnosis of many diseases including cancer, pulmonary diseases, etc. In this present review, the importance of various kinds of nanoparticles and their biomedical applications are discussed in much detail.
Collapse
|
4
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
6
|
Gao Y, Ye Y, Xu J, Wu Q, Yao B, Chen W. Rapid and easy quantitative identification of Cronobacter spp. in infant formula milk powder by isothermal strand-exchange-amplification based molecular capturing lateral flow strip. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Lugani Y, Sooch BS, Singh P, Kumar S. Nanobiotechnology applications in food sector and future innovations. MICROBIAL BIOTECHNOLOGY IN FOOD AND HEALTH 2021. [PMCID: PMC7499077 DOI: 10.1016/b978-0-12-819813-1.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Abstract
Magnetic particle-based immunoassays are widely used in microbiology-related assays for both microbial capture, separation, analysis, and detection. Besides facilitating sample operation, the implementation of micro-to-nanometer scale magnetic beads as a solid support potentially shortens the incubation time (for magnetic immuno capture) from several hours to less than an hour. Analytical technologies based on magnetic beads offer a rapid, effective and inexpensive way to separate and concentrate the target analytes prior to detection. Magneto-immuno separation uses magnetic particles coated with specific antibodies to capture target microorganisms, bear the corresponding antigens, and subsequently separate them from the sample matrix in a magnetic field. The method has been proven effective in separating various types of pathogenic bacteria from environmental water samples and in eliminating background interferences. Magnetic particles are often used to capture target cells (pathogenic bacteria) from samples. In most commercially available assays, the actual identification and quantitation of the captured cells is then performed by classical microbiological assays. This review highlights the most sensitive analytic methods (i.e., long-range surface plasmon resonance and electrochemical impedance spectroscopy) to detect magnetically tagged bacteria in conjunction with magnetic actuation.
Collapse
Affiliation(s)
- Eugen Gheorghiu
- International Centre of Biodynamics, Bucharest 060101, Romania
| |
Collapse
|
9
|
Busch R, Karim F, Weis J, Sun Y, Zhao C, Vasquez ES. Optimization and Structural Stability of Gold Nanoparticle-Antibody Bioconjugates. ACS OMEGA 2019; 4:15269-15279. [PMID: 31552374 PMCID: PMC6751724 DOI: 10.1021/acsomega.9b02276] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 05/07/2023]
Abstract
Gold nanoparticles (AuNPs) bound with biomolecules have emerged as suitable biosensors exploiting unique surface chemistries and optical properties. Many efforts have focused on antibody bioconjugation to AuNPs resulting in a sensitive bioconjugate to detect specific types of bacteria. Unfortunately, bacteria thrive under various harsh environments, and an understanding of bioconjugate stability is needed. Here, we show a method for optimizing Listeria monocytogenes polyclonal antibodies bioconjugation mechanisms to AuNPs via covalent binding at different pH values, from 2 to 11, and 2-(N-morpholino)ethanesulfonic acid (MES), 3-(N-morpholino)propanesulfonic acid, NaOH, HCl conditions. By fitting Lorentz curves to the amide I and II regions, we analyze the stability of the antibody secondary structure. This shows an increase in the apparent breakdown of the antibody secondary structure during bioconjugation as pH decreases from 7.9 to 2. We find variable adsorption efficiency, measured as the percentage of antibody adsorbed to the AuNP surface, from 17 to 27% as pH increases from 2 to 6 before decreasing to 8 and 13% at pH 7.9 and 11, respectively. Transmission electron microscopy (TEM) analysis reveals discrepancies between size and morphological changes due to the corona layer assembly from antibody binding to single nanoparticles versus aggregation or cluster self-assembly into large aggregates. The corona layer formation size increases from 3.9 to 5.1 nm from pH 2 to 6, at pH 7.9, there is incomplete corona formation, whereas at pH 11, there is a corona layer formed of 6.4 nm. These results indicate that the covalent binding process was more efficient at lower pH values; however, aggregation and deactivation of the antibodies were observed. We demonstrate that optimum bioconjugation condition was determined at pH 6 and MES buffer-type by indicators of covalent bonding and stability of the antibody secondary structure using Fourier transform-infrared, the morphological characteristics and corona layer formation using TEM, and low wavelength shifts of ultraviolet-visible after bioconjugation.
Collapse
Affiliation(s)
- Robert
T. Busch
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - Farzia Karim
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - John Weis
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - Yvonne Sun
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - Chenglong Zhao
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| | - Erick S. Vasquez
- Department
of Chemical and Materials Engineering, Department of Electro-Optics and
Photonics, Department of Biology, Integrative Science and Engineering Center, and Department of
Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469, United States
| |
Collapse
|
10
|
Aly MA, Domig KJ, Kneifel W, Reimhult E. Whole Genome Sequencing-Based Comparison of Food Isolates of Cronobacter sakazakii. Front Microbiol 2019; 10:1464. [PMID: 31333604 PMCID: PMC6615433 DOI: 10.3389/fmicb.2019.01464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Cronobacter sakazakii is an emerging foodborne pathogen, which is linked to life-threatening infections causing septicemia, meningitis, and necrotizing enterocolitis. These infections have been epidemiologically connected to ingestion of contaminated reconstituted powder infant formula. Even at low water activity C. sakazakii can survive for a long time; it is capable of protective biofilm formation and occasionally shows high virulence and pathogenicity even following stressful environmental conditions. Hence it is a challenging task for the food industry to control contamination of food ingredients and products through the entire production chain, since an increasing number of severe food-related outbreaks of C. sakazakii infections has been observed. The seemingly great capability of C. sakazakii to survive even strict countermeasures combined with its prevalence in many food ingredients requires a greater in depth understanding of its virulence factors to master the food safety issues related to this organism. In this context, we present the whole genome sequence (WGS) of two different C. sakazakii isolated from skimmed milk powder (C7) and ready-to-eat salad mix (C8), respectively. These are compared to other, already sequenced, C. sakazakii genomes. Sequencing of the fusA allele revealed that both isolates were C. sakazakii. We investigated the molecular characteristics of both isolates relevant for genes associated with pathogenesis and virulence factors, resistance to stressful environmental conditions (e.g., osmotic and heat), survival in desiccation as well as conducted a comparative genomic analysis. By using multi-locus sequence typing (MLST), the genetic type of both isolates is assessed and the number of unique genes is determined. DNA of C. sakazakii C8 is shown to hold a novel and unique sequence type; the number of unique genes identified in the genomic sequence of C. sakazakii C7 and C8 were 109 and 188, respectively. Some of the determined unique genes such as the rhs and VgrG genes are linked to the Type VI Secretion System cluster, which is associated with pathogenicity and virulence factors. Moreover, seven genes encoding for multi-drug resistance were found in both isolates. The finding of a number of genes linked to producing capsules and biofilm are likely related to the observed resistance to desiccation.
Collapse
Affiliation(s)
- Mohamed A Aly
- Department of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Wolfgang Kneifel
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Erik Reimhult
- Department of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
11
|
Aly MA, Reimhult E, Kneifel W, Domig KJ. Characterization of Biofilm Formation by Cronobacter spp. Isolates of Different Food Origin under Model Conditions. J Food Prot 2019; 82:65-77. [PMID: 30702944 DOI: 10.4315/0362-028x.jfp-18-036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cronobacter spp. are opportunistic human pathogens that cause serious diseases in neonates and immunocompromised people. Owing to their biofilm formation on various surfaces, both their detection and their removal from production plants constitute a major challenge. In this study, food samples were randomly collected in Austria and examined for the presence of Cronobacter spp. Presumptive isolates were identified by a polyphasic approach. Five percent of the samples were positive for C. sakazakii and 2.4% for C. dublinensis. Individual growth of the isolates was characterized based on lag time, growth rate, and generation time. During an incubation period of 6 to 72 h, biofilm formation of 11 selected isolates was quantified under model conditions by a crystal violet staining assay with 96-well plates with different carbon sources (lactose, glucose, maltose, sucrose, and sodium acetate) and NaCl levels and under variable temperature and pH conditions. Biofilm formation was more pronounced at lactose concentrations between 0.25 and 3% compared with 5% lactose, which lead to thinner layers. C. sakazakii isolate C7, isolated from infant milk powder, was the strongest biofilm producer at 10 mM Mg2+ and 5 mM Mn2+, 0.5% sodium acetate, at pH levels between 7 and 9 at 37°C for 24 h. C. sakazakii strain C6 isolated from a plant air filter was identified as a moderate biofilm former and C. sakazakii strain DSM 4485, a clinical isolate, as a weak biofilm former. Based on PCR detection, genes bcsA, bcsB, and bcsG encoding for cellulose could be identified as markers for biofilm formation. Isolates carrying bcsA and bcsB showed significantly stronger biofilm formation than isolates without these genes ( P < 0.05), in strong correlation with the results obtained in the crystal violet assay. Further investigations using confocal laser scanning microscopy revealed that extracellular polymeric substances and glycocalyx secretions were the dominating components of the biofilms and that the viable fraction of bacteria in the biofilm decreased over time.
Collapse
Affiliation(s)
- Mohamed A Aly
- 1 Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.,2 Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.,3 Department of Nanobiotechnology, Institute for Biologically Inspired Materials, BOKU - University of Natural Resources and Life Sciences, A-1190 Vienna, Austria (ORCID: http://orcid.org/0000-0003-1090-4284 [K.J.D.])
| | - Erik Reimhult
- 3 Department of Nanobiotechnology, Institute for Biologically Inspired Materials, BOKU - University of Natural Resources and Life Sciences, A-1190 Vienna, Austria (ORCID: http://orcid.org/0000-0003-1090-4284 [K.J.D.])
| | - Wolfgang Kneifel
- 1 Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Konrad J Domig
- 1 Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| |
Collapse
|