1
|
Cruz Lozada JA, Rosario RA, Flores SY, Kisslinger K, Fonseca LF, Piñero Cruz DM. High-Sensitivity NO 2 Gas Sensor: Exploiting UV-Enhanced Recovery in a Hexadecafluorinated Iron Phthalocyanine-Reduced Graphene Oxide. ACS OMEGA 2025; 10:2809-2818. [PMID: 39895739 PMCID: PMC11780449 DOI: 10.1021/acsomega.4c08662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025]
Abstract
Monitoring ultralow nitrogen dioxide (NO2) concentrations is crucial for air quality management and public health. However, the existing NO2 gas sensors have several defects, like high cost and power consumption, and exhibit poor selectivity. This study addresses these challenges by presenting a novel hexadecafluorinated iron phthalocyanine-reduced graphene oxide (FePcF16-rGO) covalent hybrid sensor for NO2 detection. This innovative approach, which overcomes the limitations of fabrication cost, energy efficiency, and gas selectivity, is a significant step forward in gas sensor technology. The sensor demonstrates exceptional sensitivity toward ultralow NO2 concentrations (15.14% response for 100 ppb) with a rapid 60 s UV light-induced recovery. Additionally, the sensor exhibits high selectivity for NO2, achieving a limit of detection (LOD) of 8.59 ppb. This approach paves the way for developing cost-effective, energy-efficient, and miniature NO2 monitoring devices for improved environmental monitoring and enhanced safety in workplaces where NO2 exposure is a concern.
Collapse
Affiliation(s)
- John A. Cruz Lozada
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
- Molecular
Science Research Center, San Juan 00926-2614, Puerto
Rico
| | - Ricardo A. Rosario
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
| | - Soraya Y. Flores
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
| | - Kim Kisslinger
- Center for
Functional Nanomaterials, Brookhaven National
Laboratory, Bldg 735 Upton New York 11973-5000, United
States
| | - Luis F. Fonseca
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
| | - Dalice M. Piñero Cruz
- Faculty
of Natural Sciences, University of Puerto
Rico, Río Piedras Campus, San Juan 00931, Puerto Rico
- Molecular
Science Research Center, San Juan 00926-2614, Puerto
Rico
| |
Collapse
|
2
|
Krasnov P, Ivanova V, Klyamer D, Bonegardt D, Fedorov A, Basova T. Hybrid Materials Based on Carbon Nanotubes and Tetra- and Octa-Halogen-Substituted Zinc Phthalocyanines: Sensor Response Toward Ammonia from the Quantum-Chemical Point of View. SENSORS (BASEL, SWITZERLAND) 2024; 25:149. [PMID: 39796940 PMCID: PMC11722734 DOI: 10.3390/s25010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
This paper presents the results of quantum-chemical modeling performed by the Density Functional-Based Tight Binding (DFTB) method to investigate the change in the band structure of hybrid materials based on carbon nanotubes and unsubstituted, tetra-, or octa-halogen-substituted zinc phthalocyanines upon the adsorption of ammonia molecules. The study showed that the electrical conductivity of these materials and its changes in the case of interaction with ammonia molecules depend on the position of the impurity band formed by the orbitals of macrocycle atoms relative to the forbidden energy gap of the hybrids. The sensor response of the hybrids containing halogenated phthalocyanines was lower by one or two orders of magnitude, depending on the number of substituents, compared to the hybrid with unsubstituted zinc phthalocyanine. This result was obtained by calculations performed using the nonequilibrium Green's functions (NEGF) method, which demonstrated a change in the electrical conductivity of the hybrids upon the adsorption of ammonia molecules. The analysis showed that in order to improve the sensor characteristics of CNT-based hybrid materials, preference should be given to those phthalocyanines in which substituents contribute to an increase in HOMO energy relative to the unsubstituted macrocycles.
Collapse
Affiliation(s)
- Pavel Krasnov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, 26 Kirensky St., 660074 Krasnoyarsk, Russia;
- Qingdao Innovation and Development Center, Harbin Engineering University, 1777 Sansha St., Huangdao Dist., Qingdao 266500, China
| | - Victoria Ivanova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (V.I.); (D.K.); (D.B.)
| | - Darya Klyamer
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (V.I.); (D.K.); (D.B.)
| | - Dmitry Bonegardt
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (V.I.); (D.K.); (D.B.)
| | - Aleksandr Fedorov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Tamara Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (V.I.); (D.K.); (D.B.)
| |
Collapse
|
3
|
Klyamer D, Shao W, Krasnov P, Sukhikh A, Dorovskikh S, Popovetskiy P, Li X, Basova T. Cobalt and Iron Phthalocyanine Derivatives: Effect of Substituents on the Structure of Thin Films and Their Sensor Response to Nitric Oxide. BIOSENSORS 2023; 13:bios13040484. [PMID: 37185559 PMCID: PMC10136685 DOI: 10.3390/bios13040484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
In this work, we study the effect of substituents in cobalt(II) and iron(II) phthalocyanines (CoPcR4 and FePcR4 with R = H, F, Cl, tBu) on the structural features of their films, and their chemi-resistive sensor response to a low concentration of nitric oxide. For the correct interpretation of diffractograms of phthalocyanine films, structures of CoPcCl4 and FePcCl4 single crystals were determined for the first time. Films were tested as active layers for the determination of low concentrations of NO (10-1000 ppb). It was found that the best sensor response to NO was observed for the films of chlorinated derivatives MPcCl4 (M = Co, Fe), while the lowest response was in the case of MPc(tBu)4 films. FePcCl4 films exhibited the maximal response to NO, with a calculated limit of detection (LOD) of 3 ppb; the response and recovery times determined at 30 ppb of NO were 30 s and 80 s, respectively. The LOD of a CoPcCl4 film was 7 ppb. However, iron phthalocyanine films had low stability and their sensitivity to NO decreased rapidly over time, while the response of cobalt phthalocyanine films remained stable for at least several months. In order to explain the obtained regularities, quantum chemical calculations of the binding parameters between NO and phthalocyanine molecules were carried out. It was shown that the binding of NO to the side atoms of phthalocyanines occurred through van der Waals forces, and the values of the binding energies were in direct correlation with the values of the sensor response to NO.
Collapse
Affiliation(s)
- Darya Klyamer
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Wenping Shao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Pavel Krasnov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk 660074, Russia
| | - Aleksandr Sukhikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Svetlana Dorovskikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Pavel Popovetskiy
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Xianchun Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Tamara Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Baygu Y, Capan İ, Capan R, Erdogan M, Acikbas Y, Kabay N, Gök Y, Buyukkabasakal K. Sensor application and mathematical modeling of new Zn(II) phthalocyanine containing 26-membered tetraoxadithia macrocycle moieties. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Octafluoro-Substituted Phthalocyanines of Zinc, Cobalt, and Vanadyl: Single Crystal Structure, Spectral Study and Oriented Thin Films. Int J Mol Sci 2023; 24:ijms24032034. [PMID: 36768358 PMCID: PMC9917058 DOI: 10.3390/ijms24032034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In this work, octafluoro-substituted phthalocyanines of zinc, vanadyl, and cobalt (MPcF8, M = Zn(II), Co(II), VO) were synthesized and studied. The structures of single crystals of the obtained phthalocyanines were determined. To visualize and compare intermolecular contacts in MPcF8, an analysis of Hirshfeld surfaces (HS) was performed. MPcF8 nanoscale thickness films were deposited by organic molecular beam deposition technique and their structure and orientation were studied using X-ray diffraction. Comparison of X-ray diffraction patterns of thin films with the calculated diffractograms showed that all three films consisted of a single crystal phase, which corresponded to a phase of single crystals. Only one strong diffraction peak corresponding to the plane (001) was observed on the diffraction pattern of each film, which indicated a strong preferred orientation with the vast majority of crystallites oriented with a (001) crystallographic plane parallel to the substrate surface. The effect of the central metals on the electronic absorption and vibrational spectra of the studied phthalocyanines as well as on the electrical conductivity of their films is also discussed.
Collapse
|
6
|
Surface engineering of zinc phthalocyanine organic thin-film transistors results in part-per-billion sensitivity towards cannabinoid vapor. Commun Chem 2022; 5:178. [PMID: 36697684 PMCID: PMC9814745 DOI: 10.1038/s42004-022-00797-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Phthalocyanine-based organic thin-film transistors (OTFTs) have been demonstrated as sensors for a range of analytes, including cannabinoids, in both liquid and gas phases. Detection of the primary cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), is necessary for quality control and regulation, however, current techniques are often not readily available for consumers, industry, and law-enforcement. The OTFT characteristics, X-ray diffraction (XRD) spectra, and grazing incident wide angle x-ray scattering (GIWAXS) spectra of two copper and three zinc phthalocyanines, with varying degrees of peripheral fluorination, were screened to determine sensitivity to THC vapor. Unsubstituted ZnPc was found to be the most sensitive material and, by tuning thin-film morphology, crystal polymorphs, and thickness through altered physical vapor deposition conditions, we increased the sensitivity to THC by 100x. Here we demonstrate that deposition conditions, and the resulting physical film characteristics, play a significant role in device sensitization.
Collapse
|
7
|
Nizovtsev AS. NON-COVALENT INTERATOMIC INTERACTIONS IN TETRAFLUORO-SUBSTITUTED ZINC PHTHALOCYANINE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Oleiki E, Javaid S, Lee G. Impact of fluorination on the energy level alignment of an F n ZnPc/MAPbI 3 interface. NANOSCALE ADVANCES 2022; 4:5070-5076. [PMID: 36504749 PMCID: PMC9680936 DOI: 10.1039/d2na00582d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/09/2022] [Indexed: 06/17/2023]
Abstract
We have studied interactions at an interface between a Methylammonium Lead Iodide (MAPbI3) surface and zinc-phthalocyanine molecules with F substituting peripheral H (F n ZnPc; n = 4, 8, 12, and 16) by employing hybrid density functional theory (DFT) based simulations. These calculations show that F n ZnPc molecules form a stable interface with MAPbI3, whose binding strength is comparable to that of the un-substituted (ZnPc) case. As a consequence of fluorination, an increase in the ionization potential/electron affinity (i.e., a systematic lowering of molecular energy levels), as well as interfacial charge transfer, is observed whose magnitude depends upon the degree of fluorination. In contrast to the common belief of unfavorable hole transfer for excessive fluorination, our work unveils that the valence band offset remains favorable for all ranges of substitution (n); thus, hole transfer from MAPbI3 to F n ZnPc is facilitated while the electron transfer process is suppressed. This unusual behavior originates from the intermolecular interaction and substrate-to-molecule electron transfer at the heterojunction, which gradually suppresses the downward shift of F n ZnPc energy levels by increasing the value of n. Given the beneficial impacts of fluorination, such as hydrophobicity, our work provides valuable insight for exploiting stable F n ZnPc towards high-efficiency perovskite solar cells.
Collapse
Affiliation(s)
- Elham Oleiki
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Saqib Javaid
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- MMSG, Theoretical Physics Division PINSTECH, P.O. Nilore Islamabad Pakistan
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
9
|
Nizovtsev AS. STRUCTURAL ISOMERS AND VIBRATIONAL SPECTRUM OF TETRAFLUOROSUBSTITUTED ZINC PHTHALOCYANINE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622090104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Klyamer DD, Basova TV. EFFECT OF THE STRUCTURAL FEATURES OF METAL PHTHALOCYANINE FILMS ON THEIR ELECTROPHYSICAL PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622070010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Heterostructures Based on Cobalt Phthalocyanine Films Decorated with Gold Nanoparticles for the Detection of Low Concentrations of Ammonia and Nitric Oxide. BIOSENSORS 2022; 12:bios12070476. [PMID: 35884279 PMCID: PMC9313448 DOI: 10.3390/bios12070476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
This work is aimed at the development of new heterostructures based on cobalt phthalocyanines (CoPc) and gold nanoparticles (AuNPs), and the evaluation of the prospects of their use to determine low concentrations of ammonia and nitric oxide. For this purpose, CoPc films were decorated with AuNPs by gas-phase methods (MOCVD and PVD) and drop-casting (DC), and their chemiresistive sensor response to low concentrations of NO (10–50 ppb) and NH3 (1–10 ppm) was investigated. A comparative analysis of the characteristics of heterostructures depending on the preparation methods was carried out. The composition, structure, and morphology of the resulting hybrid films were studied by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission (ICP-AES) spectroscopy, as well as electron microscopy methods to discuss the effect of these parameters on the sensor response of hybrid films to ammonia and nitric oxide. It was shown that regardless of the fabrication method, the response of Au/CoPc heterostructures to NH3 and NO gases increased with an increase in the concentration of gold. The sensor response of Au/CoPc heterostructures to NH3 increased 2–3.3 times compared to CoPc film, whereas in the case of NO it increased up to 16 times. The detection limits of the Au/CoPc heterostructure with a gold content of ca. 2.1 µg/cm2 for NH3 and NO were 0.1 ppm and 4 ppb, respectively. It was shown that Au/CoPc heterostructures can be used for the detection of NH3 in a gas mixture simulating exhaled air (N2—74%, O2—16%, H2O—6%, CO2—4%).
Collapse
|
12
|
Klyamer D, Shutilov R, Basova T. Recent Advances in Phthalocyanine and Porphyrin-Based Materials as Active Layers for Nitric Oxide Chemical Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:895. [PMID: 35161641 PMCID: PMC8840409 DOI: 10.3390/s22030895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Nitric oxide (NO) is a highly reactive toxic gas that forms as an intermediate compound during the oxidation of ammonia and is used for the manufacture of hydroxylamine in the chemical industry. Moreover, NO is a signaling molecule in many physiological and pathological processes in mammals, as well as a biomarker indicating the course of inflammatory processes in the respiratory tract. For this reason, the detection of NO both in the gas phase and in the aqueous media is an important task. This review analyzes the state of research over the past ten years in the field of applications of phthalocyanines, porphyrins and their hybrid materials as active layers of chemical sensors for the detection of NO, with a primary focus on chemiresistive and electrochemical ones. The first part of the review is devoted to the study of phthalocyanines and porphyrins, as well as their hybrids for the NO detection in aqueous solutions and biological media. The second part presents an analysis of works describing the latest achievements in the field of studied materials as active layers of sensors for the determination of gaseous NO. It is expected that this review will further increase the interest of researchers who are engaged in the current level of evaluation and selection of modern materials for use in the chemical sensing of nitric oxide.
Collapse
Affiliation(s)
| | | | - Tamara Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (D.K.); (R.S.)
| |
Collapse
|
13
|
Cranston RR, Lessard BH. Metal phthalocyanines: thin-film formation, microstructure, and physical properties. RSC Adv 2021; 11:21716-21737. [PMID: 35478816 PMCID: PMC9034105 DOI: 10.1039/d1ra03853b] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
Metal phthalocyanines (MPcs) are an abundant class of small molecules comprising of a highly conjugated cyclic structure with a central chelated metal ion. Due to their remarkable chemical, mechanical, and thermal stability MPcs have become popular for a multitude of applications since their discovery in 1907. The potential for peripheral and axial functionalization affords structural tailoring to create bespoke MPc complexes for various next generation applications. Specifically, thin-films of MPcs have found promising utility in medical and electronic applications where the need to understand the relationship between chemical structure and the resulting thin-film properties is an important ongoing field. This review aims to compile the fundamental principles of small molecule thin-film formation by physical vapour deposition and solution processing focusing on the nucleation and growth of crystallites, thermodynamic and kinetic considerations, and effects of deposition parameters on MPc thin-films. Additionally, the structure-property relationship of MPc thin-films is examined by film microstructure, morphology and physical properties. The topics discussed in this work will elucidate the foundations of MPc thin-films and emphasize the critical need for not only molecular design of new MPcs but the role of their processing in the formation of thin-films and how this ultimately governs the performance of the resulting application.
Collapse
Affiliation(s)
- Rosemary R Cranston
- University of Ottawa, Department of Chemical and Biological Engineering 161 Louis Pasteur Ottawa ON Canada
| | - Benoît H Lessard
- University of Ottawa, Department of Chemical and Biological Engineering 161 Louis Pasteur Ottawa ON Canada
- University of Ottawa, School of Electrical Engineering and Computer Science 800 King Edward Ave. Ottawa ON Canada
| |
Collapse
|
14
|
Fluorination vs. Chlorination: Effect on the Sensor Response of Tetrasubstituted Zinc Phthalocyanine Films to Ammonia. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, the effect of fluorine and chlorine substituents in tetrasubstituted zinc phthalocyanines, introduced into the non-peripheral (ZnPcR4-np, R = F, Cl) and peripheral (ZnPcR4-p, R = F, Cl) positions of macrocycle, on their structure and chemiresistive sensor response to low concentration of ammonia is studied. The structure and morphology of the zinc phthalocyanines films (ZnPcR4) were investigated by X-ray diffraction and atomic force microscopy methods. To understand different effects of chlorine and fluorine substituents, the strength and nature of the bonding of ammonia and ZnPcHal4 molecules were studied by quantum chemical simulation. It was shown on the basis of comparative analysis that the sensor response to ammonia was found to increase in the order ZnPcCl4-np < ZnPcF4-np < ZnPcF4-p < ZnPcCl4-p, which is in good agreement with the values of bonding energy between hydrogen atoms of NH3 and halogen substituents in the phthalocyanine rings. ZnPcCl4-p films demonstrate the maximal sensor response to ammonia with the calculated detection limit of 0.01 ppm; however, they are more sensitive to humidity than ZnPcF4-p films. It was shown that both ZnPcF4-p and ZnPcCl4-p and can be used for the selective detection of NH3 in the presence of carbon dioxide, dichloromethane, acetone, toluene, and ethanol.
Collapse
|
15
|
Abstract
Metal phthalocyanines bearing electron-withdrawing fluorine substituents were synthesized a long time ago, but interest in the study of their films has emerged in recent decades. This is due to the fact that, unlike unsubstituted phthalocyanines, films of some fluorinated phthalocyanines exhibit the properties of n-type semiconductors, which makes them promising candidates for application in ambipolar transistors. Apart from this, it was shown that the introduction of fluorine substituents led to an increase in the sensitivity of phthalocyanine films to reducing gases. This review analyzes the state of research over the last fifteen years in the field of applications of fluoro-substituted metal phthalocyanines as active layers of gas sensors, with a primary focus on chemiresistive ones. The active layers on the basis of phthalocyanines with fluorine and fluorine-containing substituents of optical and quartz crystal microbalance sensors are also considered. Attention is paid to the analysis of the effect of molecular structure (central metal, number and type of fluorine substituent etc.) on sensor properties of fluorinated phthalocyanine films.
Collapse
|
16
|
Bonegardt D, Klyamer D, Krasnov P, Sukhikh A, Basova T. Effect of the position of fluorine substituents in tetrasubstituted metal phthalocyanines on their vibrational spectra. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Hassani N. Theoretical investigation of the interaction between the metal phthalocyanine [MPc]a(M = Sc, Ti, and V; a = -1, 0, and +1) complexes and formaldehyde. Turk J Chem 2021; 45:119-131. [PMID: 33679158 PMCID: PMC7925323 DOI: 10.3906/kim-2006-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/23/2020] [Indexed: 11/05/2022] Open
Abstract
Formaldehyde (FA, CH2O) is one of the toxic volatile organic compounds that cause harmful effects on the human body. In this work, the interaction of FA gas with metal phthalocyanine (MPc) molecules was studied by employing density functional theory calculations. A variety of [MPc]a (M = Sc, Ti, and V; a = –1, 0, and +1) complexes were studied, and the electronic properties, interaction energies, and charge transfer properties of all of the studied molecules were systematically discussed. Among the studied complexes, the Sc and Ti phthalocyanines were more reactive toward the adsorption of FA gas. Moreover, it was revealed that the interaction of the [ScPc]+1 and [TiPc]0 complexes with the CH2O molecule was stronger, in which the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap of 46% and 36% decreased after FA adsorption. The results indicated that the MPc-based materials may be a promising candidate for the detection of FA gas.
Collapse
Affiliation(s)
- Nasim Hassani
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz Iran
| |
Collapse
|
18
|
Vlček J, Kühne IA, Zákutná D, Marešová E, Fekete L, Otta J, Fitl P, Vrňata M. Temperature-dependent phase composition of fluorinated zinc phthalocyanine thin films and their sensing properties towards gaseous NO 2. CrystEngComm 2021. [DOI: 10.1039/d1ce01014j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents a temperature-dependent phase composition study of thin films (200 nm) of fluorinated zinc phthalocyanines (4F, 16F) and their chemiresistive response towards NO2 gas.
Collapse
Affiliation(s)
- Jan Vlček
- Department of Physics and Measurements, University of Chemistry and Technology, Technická 5, 16 628 Prague 6, Czech Republic
- FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Irina A. Kühne
- FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Dominika Zákutná
- Department of Inorganic Chemistry, Charles University Prague, Faculty of Science, Hlavova 8, 12 840 Prague 2, Czech Republic
| | - Eva Marešová
- Department of Physics and Measurements, University of Chemistry and Technology, Technická 5, 16 628 Prague 6, Czech Republic
- FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Ladislav Fekete
- FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Jaroslav Otta
- Department of Physics and Measurements, University of Chemistry and Technology, Technická 5, 16 628 Prague 6, Czech Republic
- FZU - Institute of Physics - Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Přemysl Fitl
- Department of Physics and Measurements, University of Chemistry and Technology, Technická 5, 16 628 Prague 6, Czech Republic
| | - Martin Vrňata
- Department of Physics and Measurements, University of Chemistry and Technology, Technická 5, 16 628 Prague 6, Czech Republic
| |
Collapse
|
19
|
Comeau ZJ, Facey GA, Harris CS, Shuhendler AJ, Lessard BH. Engineering Cannabinoid Sensors through Solution-Based Screening of Phthalocyanines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50692-50702. [PMID: 33125212 DOI: 10.1021/acsami.0c17146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic thin-film transistors (OTFTs) have shown promise for a range of sensing applications, with phthalocyanine-based OTFTs demonstrated as sensors for atmospheric parameters, volatile gases, and small organic molecules including cannabinoids. However, the process of fabricating, testing, and optimizing OTFTs in a laboratory setting requires highly specialized equipment, materials, and expertise. To determine if sensor development can be expedited and thus reduce manufacturing burden, spectroelectrochemistry is applied to rapidly screen for molecular interactions between metal-free phthalocyanines and a variety of metal phthalocyanines (MPcs) and the cannabinoids Δ9-tetrahydrocannabinol (THC) or cannabidiol (CBD), with and without a cannabinoid-sensitive chromophore (Fast Blue BB). Spectral analyses are corroborated by 2D-NMR and related to measured OTFT performance. Spectroelectrochemical changes to the Q band region of the phthalocyanine spectra in the presence of analytes can be used to predict the response of OTFTs. Thus, with spectroelectrochemistry, a range of potential materials for OTFT small organic molecule-sensing applications can be quickly analyzed, and phthalocyanines with a preferred response can be selected.
Collapse
Affiliation(s)
- Zachary J Comeau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt, Ottawa, Ontario K1N 6N5, Canada
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, Ontario K1N 6N5, Canada
| | - Glenn A Facey
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, Ontario K1N 6N5, Canada
| | - Cory S Harris
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Adam J Shuhendler
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, Ontario K1N 6N5, Canada
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt, Ottawa, Ontario K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave. Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
20
|
Vanadyl Phthalocyanine Films and Their Hybrid Structures with Pd Nanoparticles: Structure and Sensing Properties. SENSORS 2020; 20:s20071893. [PMID: 32235349 PMCID: PMC7181134 DOI: 10.3390/s20071893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
In this work, thin films of vanadyl phthalocyanines (VOPc and VOPcF4) are studied as active layers for the detection of gaseous ammonia and hydrogen. The effect of F-substituents on the structural features of vanadyl phthalocyanine films and their sensor response toward ammonia (10–50 ppm) and hydrogen (100–500 ppm) is investigated by X-ray diffraction (XRD) and chemiresistive methods, respectively. It is shown that the sensor response of VOPcF4 films to ammonia is 2–3 times higher than that of VOPc films. By contrast, the sensor response to hydrogen is higher in the case of VOPc films. Apart from this, the hybrid structures of vanadyl phthalocyanine films with Pd nanoparticles deposited on their surface by a chemical vapor deposition method are also tested to reveal the effect of Pd nanoparticles on the sensitivity of VOPc films to hydrogen. Deposition of Pd nanoparticles on the surface of VOPc films leads to the noticeable increase of their sensitivity to hydrogen.
Collapse
|
21
|
Semushkina GI, Mazalov LN, Lavrukhina SA, Gulyaev RV, Klyamer DD, Basova TV. Experimental and Theoretical Study of Electronic Structure of Zinc Phthalocyanines ZnPc and ZnPcF16. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620030051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Pekbelgin Karaoğlu H, Kalkan Burat A. α- and β-Substituted Metal-Free Phthalocyanines: Synthesis, Photophysical and Electrochemical Properties. Molecules 2020; 25:E363. [PMID: 31963102 PMCID: PMC7024180 DOI: 10.3390/molecules25020363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Two novel phthalonitrile derivatives, bearing two hexyloxy groups and a benzodioxin (or a naphthodioxin) annulated ring, along with their corresponding metal-free phthalocyanines (H2Pc) were prepared. FT-IR, mass, electronic absorption, 1H NMR, and 13C NMR spectroscopy were employed for the characterization of all compounds. The effect of hexadeca substituents on the photophysical properties of metal-free Pcs was investigated. Photophysical properties of H2Pc were studied in tetrahydrofuran (THF). Fluorescent quantum yields of phthalocyanines (Pcs) were calculated and compared with the unsubstituted phthalocyanine. 1,4-Benzoquinone effectively quenched the fluorescence of these compounds in THF. Cyclic and square wave voltammetry methods were applied to metal-free phthalocyanines and Pc-centered oxidation and reduction processes were obtained.
Collapse
Affiliation(s)
| | - Ayfer Kalkan Burat
- Chemistry Department, Technical University of Istanbul, İstanbul TR34469, Turkey
| |
Collapse
|
23
|
Duan X, Zhang Y, Wang H, Dai F, Yang G, Chen Y. A phthalocyanine sensor array based on sensitivity and current changes for highly sensitive identification of three toxic gases at ppb levels. NEW J CHEM 2020. [DOI: 10.1039/d0nj02025g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first phthalocyanine-based sensor array by the combination of two parameters, namely current change direction and sensitivity, for accurate discrimination and wide range of detection of three toxic gases at ppb levels.
Collapse
Affiliation(s)
- Xueqian Duan
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Yingze Zhang
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Haoyuan Wang
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Fangna Dai
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Guangwu Yang
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Yanli Chen
- School of Materials Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| |
Collapse
|
24
|
Klyamer DD, Basova TV, Krasnov PO, Sukhikh AS. Effect of fluorosubstitution and central metals on the molecular structure and vibrational spectra of metal phthalocyanines. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|