1
|
Chen J, Su H, Kim JH, Liu L, Liu R. Recent advances in the CRISPR/Cas system-based visual detection method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6599-6614. [PMID: 39345221 DOI: 10.1039/d4ay01147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Currently, various infectious pathogens and bacterial toxins as well as heavy metal pollution pose severe threats to global environmental health and the socio-economic infrastructure. Therefore, there is a pressing need for rapid, sensitive, and convenient visual molecular detection methods. The rapidly evolving detection approach based on clustered regularly interspaced short palindromic repeats (CRISPR)/associated nucleases (Cas) has opened a new frontier in the field of molecular diagnostics. This paper reviews the development of visual detection methods in recent years based on different Cas and analyzes their advantages and disadvantages as well as the challenges of future research. Firstly, different CRISPR/Cas effectors and their working principles in the diagnosis of various diseases are briefly reviewed. Subsequently, the article focuses on the development of visual readout signals in point-of-care testing using laboratory-based CRISPR/Cas technology, including colorimetric, fluorescence, and lateral flow analysis. Finally, the challenges and prospects of visual detection methods based on CRISPR/Cas technology are discussed.
Collapse
Affiliation(s)
- Jinrong Chen
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea.
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers, Linyi University, Linyi 276005, China.
| | - Hang Su
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers, Linyi University, Linyi 276005, China.
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea.
| | - Lishang Liu
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea.
| |
Collapse
|
2
|
Pohanka M. Current trends in digital camera-based bioassays for point-of-care tests. Clin Chim Acta 2024; 552:117677. [PMID: 38000459 DOI: 10.1016/j.cca.2023.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Point-of-care and bedside tests are analytical devices suitable for a growing role in the current healthcare system and provide the opportunity to achieve an exact diagnosis by an untrained person and in various conditions and sites where it is necessary. Using a digital camera integrated into a well-accessible device like a smartphone brings a new way in which a colorimetric point-of-care diagnostic test can provide unbiased data. This review summarizes basic facts about the colorimetric point-of-care tests, principles of how to use a portable device with a camera in the assay, applications of digital cameras for the current tests, and new devices described in the recent papers. An overview of the recent literature and a discussion of recent developments and future trends are provided.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic.
| |
Collapse
|
3
|
Delgado-Cano D, Clemente A, Adrover-Jaume C, Vaquer A, López M, Martínez R, Roig IM, Iglesias A, Cosío BG, de la Rica R. Facemask analyses for the non-invasive detection of chronic and acute P. aeruginosa lung infections using nanoparticle-based immunoassays. Analyst 2023; 148:4837-4843. [PMID: 37622408 DOI: 10.1039/d3an00979c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a pathogen that persistently colonizes the respiratory tract of patients with chronic lung diseases. The risk of acquiring a chronic P. aeruginosa infection can be minimized by rapidly detecting the pathogen in the patient's airways and promptly administrating adequate antibiotics. However, the rapid detection of P. aeruginosa in the lungs involves the analysis of sputum, which is a highly complex matrix that is not always available. Here, we propose an alternative diagnosis based on analyzing breath aerosols. In this approach, nanoparticle immunosensors identify bacteria adhered to the polypropylene layer of a surgical facemask that was previously worn by the patient. A polypropylene processing protocol was optimized to ensure the efficient capture and analysis of the target pathogen. The proposed analytical platform has a theoretical limit of detection of 105 CFU mL-1 in aerosolized mock samples, and a dynamic range between 105 and 108 CFU mL-1. When tested with facemasks worn by patients, the biosensors were able to detect chronic and acute P. aeruginosa lung infections, and to differentiate them from respiratory infections caused by other pathogens. The results shown here pave the way to diagnose Pseudomonas infections at the bedside, as well as to identify the progress from chronic to acute infection.
Collapse
Affiliation(s)
- David Delgado-Cano
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
| | - Antonio Clemente
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III Madrid, Spain
| | - Cristina Adrover-Jaume
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Meritxell López
- Inflamación, Reparación y Cáncer en Enfermedades Respiratorias (i-RESPIRE), Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Rocío Martínez
- Inflamación, Reparación y Cáncer en Enfermedades Respiratorias (i-RESPIRE), Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Isabel M Roig
- Department of Respiratory Medicine, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Amanda Iglesias
- Inflamación, Reparación y Cáncer en Enfermedades Respiratorias (i-RESPIRE), Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Borja G Cosío
- Inflamación, Reparación y Cáncer en Enfermedades Respiratorias (i-RESPIRE), Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
4
|
Trakoolwilaiwan T, Takeuchi Y, Leung TS, Sebek M, Storozhuk L, Nguyen L, Tung LD, Thanh NTK. Development of a thermochromic lateral flow assay to improve sensitivity for dengue virus serotype 2 NS1 detection. NANOSCALE 2023; 15:12915-12925. [PMID: 37427537 DOI: 10.1039/d3nr01858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dengue disease is a viral infection that has been widespread in tropical regions, such as Southeast Asia, South Asia and South America. A worldwide effort has been made over a few decades to halt the spread of the disease and reduce fatalities. Lateral flow assay (LFA), a paper-based technology, is used for dengue virus detection and identification because of its simplicity, low cost and fast response. However, the sensitivity of LFA is relatively low and is usually insufficient to meet the minimum requirement for early detection. In this study, we developed a colorimetric thermal sensing LFA format for the detection of dengue virus NS1 using recombinant dengue virus serotype 2 NS1 protein (DENV2-NS1) as a model antigen. Plasmonic gold nanoparticles, including gold nanospheres (AuNSPs) and gold nanorods (AuNRs), and magnetic nanoparticles (MNPs), namely iron oxide nanoparticles (IONPs) and zinc ferrite nanoparticles (ZFNPs), were studied for their thermal properties for sensing assays. AuNSPs with 12 nm diameter were chosen due to their great photothermal effect against light-emitting diodes (LEDs). In the thermal sensing assay, a thermochromic sheet is used as a temperature sensor transforming heat into a visible colour. In the typical LFA, the test line is visible at 6.25 ng mL-1 while our thermal sensing LFA offers a visual signal that can be observed at as low as 1.56 ng mL-1. The colorimetric thermal sensing LFA is capable of reducing the limit of detection (LOD) of DENV2-NS1 by 4 times compared to the typical visual readout. The colorimetric thermal sensing LFA can enhance the sensitivity of detection and deliver visuality to the user to translate without the need for an infrared (IR) camera. It has the potential to expand the utilities of LFA and satisfy early diagnostic applications.
Collapse
Affiliation(s)
- Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Terence S Leung
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Matej Sebek
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Liudmyla Storozhuk
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Linh Nguyen
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| |
Collapse
|
5
|
Mattiello CJ, Stickle DF. Characterization by image analysis of the dose vs response curve for a qualitative serum hCG lateral flow immunoassay. Clin Chim Acta 2023; 538:175-180. [PMID: 36423702 DOI: 10.1016/j.cca.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND As an adjunct to verification of performance characteristics of a qualitative serum hCG lateral flow immunoassay (LFI), we performed image analysis to characterize the dose vs response curve (visibility of the test line), as a means of understanding the transition from negative to positive as a function of increasing [hCG]. METHODS Using serum samples of known [hCG], device images were obtained using a scanner at the prescribed reading time (5 min). Image analysis (using Python and R) was used to obtain the integral (S) of the test-line color as a function of [hCG]. RESULTS Data for S as a function of [hCG] were well characterized by a simple hyperbola: S = Smax [hCG]/([hCG] + K), where K = 202 mIU/ml (r = 0.997). Replicates of S at K had CV of 7.3 %. By eye, uncertainty of test results among users occurred only below the assay's stated sensitivity of 10 mIU/ml, in region of S < 3 % of Smax, and signal:noise ratio < 3. CONCLUSIONS By image analysis, the dose vs response (Test line integral) for this qualitative serum hCG LFI was a simple hyperbola. Characterization of the dose vs response curve was useful in verification of the assay's performance characteristics.
Collapse
|
6
|
Park J. Lateral Flow Immunoassay Reader Technologies for Quantitative Point-of-Care Testing. SENSORS (BASEL, SWITZERLAND) 2022; 22:7398. [PMID: 36236497 PMCID: PMC9571991 DOI: 10.3390/s22197398] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/01/2023]
Abstract
Due to the recent pandemic caused by coronavirus disease 2019 (COVID-19), the lateral flow immunoassay used for its rapid antigen test is more popular than ever before. However, the history of the lateral flow immunoassay is about 60 years old, and its original purpose of use, such as a COVID-19 rapid antigen test or a pregnancy test, was the qualitative detection of a target analyte. Recently, the demand for quantitative analysis of lateral flow immunoassays is increasing in various fields. Lateral flow immunoassays for quantitative detection using various materials and sensor technologies are being introduced, and readers for analyzing them are being developed. Quantitative analysis readers are highly anticipated for their future development in line with technological advancements such as optical, magnetic field, photothermal, and electrochemical sensors and trends such as weight reduction, miniaturization, and cost reduction of systems. In addition, the sensing, processing, and communication functions of portable personal devices such as smartphones can be used as tools for the quantitative analysis of lateral flow immunoassays. As a result, lateral flow immunoassays can efficiently achieve the goal of rapid diagnosis by point-of-care testing. Readers used for the quantification of lateral flow immunoassays were classified according to the adopted sensor technology, and the research trends in each were reviewed in this paper. The development of a quantitative analysis system was often carried out in the assay aspect, so not only the readers but also the assay development cases were reviewed if necessary. In addition, systems for quantitative analysis of COVID-19, which have recently been gaining importance, were introduced as a separate section.
Collapse
Affiliation(s)
- Jongwon Park
- Department of Biomedical Engineering, Kyungil University, Gyeongsan 38428, Korea
| |
Collapse
|
7
|
Boutal H, Moguet C, Pommiès L, Simon S, Naas T, Volland H. The Revolution of Lateral Flow Assay in the Field of AMR Detection. Diagnostics (Basel) 2022; 12:1744. [PMID: 35885647 PMCID: PMC9317642 DOI: 10.3390/diagnostics12071744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global spread of antimicrobial resistant (AMR) bacteria represents a considerable public health concern, yet their detection and identification of their resistance mechanisms remain challenging. Optimal diagnostic tests should provide rapid results at low cost to enable implementation in any microbiology laboratory. Lateral flow assays (LFA) meet these requirements and have become essential tools to combat AMR. This review presents the versatility of LFA developed for the AMR detection field, with particular attention to those directly triggering β-lactamases, their performances, and specific limitations. It considers how LFA can be modified by detecting not only the enzyme, but also its β-lactamase activity for a broader clinical sensitivity. Moreover, although LFA allow a short time-to-result, they are generally only implemented after fastidious and time-consuming techniques. We present a sample processing device that shortens and simplifies the handling of clinical samples before the use of LFA. Finally, the capacity of LFA to detect amplified genetic determinants of AMR by isothermal PCR will be discussed. LFA are inexpensive, rapid, and efficient tools that are easy to implement in the routine workflow of laboratories as new first-line tests against AMR with bacterial colonies, and in the near future directly with biological media.
Collapse
Affiliation(s)
- Hervé Boutal
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Christian Moguet
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Lilas Pommiès
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Thierry Naas
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France;
- Team Resist, UMR1184, Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 91190 Gif-sur-Yvette, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Hervé Volland
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| |
Collapse
|
8
|
Russell SM, Alba-Patiño A, Vaquer A, Clemente A, de la Rica R. Improving the Quantification of Colorimetric Signals in Paper-Based Immunosensors with an Open-Source Reader. SENSORS 2022; 22:s22051880. [PMID: 35271026 PMCID: PMC8914853 DOI: 10.3390/s22051880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023]
Abstract
Measuring the colorimetric signals produced by the biospecific accumulation of colorimetric probes and recording the results is a key feature for next-generation paper-based rapid tests. Manual processing of these tests is time-consuming and prone to a loss of accuracy when interpreting faint and patchy signals. Proprietary, closed-source readers and software companies offering automated smartphone-based assay readings have both been criticized for interoperability issues. Here, we introduce a minimal reader prototype composed of open-source hardware and open-source software that has the benefits of automatic assay quantification while avoiding the interoperability issues associated with closed-source readers. An image-processing algorithm was developed to automate the selection of an optimal region of interest and measure the average pixel intensity. When used to quantify signals produced by lateral flow immunoassays for detecting antibodies against SARS-CoV-2, results obtained with the proposed algorithm were comparable to those obtained with a manual method but with the advantage of improving the precision and accuracy when quantifying small spots or faint and patchy signals.
Collapse
Affiliation(s)
- Steven M. Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.A.-P.); (A.V.); (R.d.l.R.)
- Correspondence: (S.M.R.); (A.C.)
| | - Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.A.-P.); (A.V.); (R.d.l.R.)
- Chemistry Department, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.A.-P.); (A.V.); (R.d.l.R.)
- Chemistry Department, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antonio Clemente
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.A.-P.); (A.V.); (R.d.l.R.)
- Correspondence: (S.M.R.); (A.C.)
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.A.-P.); (A.V.); (R.d.l.R.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| |
Collapse
|
9
|
Otoo JA, Schlappi TS. REASSURED Multiplex Diagnostics: A Critical Review and Forecast. BIOSENSORS 2022; 12:bios12020124. [PMID: 35200384 PMCID: PMC8869588 DOI: 10.3390/bios12020124] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 05/05/2023]
Abstract
The diagnosis of infectious diseases is ineffective when the diagnostic test does not meet one or more of the necessary standards of affordability, accessibility, and accuracy. The World Health Organization further clarifies these standards with a set of criteria that has the acronym ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users). The advancement of the digital age has led to a revision of the ASSURED criteria to REASSURED: Real-time connectivity, Ease of specimen collection, Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free or simple, and Deliverable to end-users. Many diagnostic tests have been developed that aim to satisfy the REASSURED criteria; however, most of them only detect a single target. With the progression of syndromic infections, coinfections and the current antimicrobial resistance challenges, the need for multiplexed diagnostics is now more important than ever. This review summarizes current diagnostic technologies for multiplexed detection and forecasts which methods have promise for detecting multiple targets and meeting all REASSURED criteria.
Collapse
|
10
|
Abdolhosseini M, Zandsalimi F, Moghaddam FS, Tavoosidana G. A review on colorimetric assays for DNA virus detection. J Virol Methods 2022; 301:114461. [PMID: 35031384 DOI: 10.1016/j.jviromet.2022.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/22/2022]
Abstract
Early detection is one of the ways to deal with DNA virus widespread prevalence, and it is necessary to know new diagnostic methods and techniques. Colorimetric assays are one of the most advantageous methods in detecting viruses. These methods are based on color change, which can be seen either with the naked eye or with special devices. The aim of this study is to introduce and evaluate effective colorimetric methods based on amplification, nanoparticle, CRISPR/Cas, and Lateral flow in the diagnosis of DNA viruses and to discuss the effectiveness of each of the updated methods. Compared to the other methods, colorimetric assays are preferred for faster detection, high efficiency, cheaper cost, and high sensitivity and specificity. It is expected that the spread of these viruses can be prevented by identifying and developing new methods.
Collapse
Affiliation(s)
- Mansoreh Abdolhosseini
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Zandsalimi
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Salasar Moghaddam
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. SMALL METHODS 2022; 6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The development of the lateral flow assay (LFA) has received much attention in both academia and industry because of their broad applications to food safety, environmental monitoring, clinical diagnosis, and so forth. The user friendliness, low cost, and easy operation are the most attractive advantages of the LFA. In recent years, quantitative detection has become another focus of LFA development. Here, the most recent studies of quantitative LFAs are reviewed. First, the principles and corresponding formats of quantitative LFAs are introduced. In the biomaterial and nanomaterial sections, the detection, capture, and signal amplification biomolecules and the optical, fluorescent, luminescent, and magnetic labels used in LFAs are described. The invention of dedicated strip readers has drawn further interest in exploiting the better performance of LFAs. Therefore, next, the development of dedicated reader devices is described and the usefulness and specifications of these devices for LFAs are discussed. Finally, the applications of LFAs in the detection of metal ions, biotoxins, pathogenic microorganisms, veterinary drugs, and pesticides in the fields of food safety and environmental health and the detection of nucleic acids, biomarkers, and viruses in clinical analyses are summarized.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, No. 11, Baiwanzhuang Street, Beijing, 100037, P. R. China
| |
Collapse
|
12
|
Pumpless three-dimensional photo paper-based microfluidic analytical device for automatic detection of thioredoxin-1 using enzyme-linked immunosorbent assay. Anal Bioanal Chem 2021; 414:3219-3230. [PMID: 34767053 DOI: 10.1007/s00216-021-03747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Microfluidic-based biosensors have been developed for their precise automatic reaction control. However, these biosensors require external devices that are difficult to transport and use. To overcome this disadvantage, our group made an easy-to-use, cheap, and light pumpless three-dimensional photo paper-based microfluidic analytical device (3D-μPAD; weight: 1.5 g). Unlike conventional paper-based microfluidic analytical devices, the 3D-μPAD can be used to control fluid flow in a 3D manner, thus allowing sophisticated multi-step reaction control. This device can control fluid flow speed and direction accurately using only the capillary-driven flow without an external device like a pump. The flow speed is controlled by the width of the microfluidic channel and its surface property. In addition, fluid speed control and 3D-bridge structure enable the control of fluid flow direction. Using these methods, multi-step enzyme-linked immunosorbent assay (ELISA) can be done automatically in sequence by injecting solutions (sample, washing, and enzyme's substrate) at the same time in the 3D-μPAD. All the steps can be performed in 14 min, and data can be analyzed immediately. To test this device, thioredoxin-1 (Trx-1), a biomarker of breast cancer, is used as the target. In the 3D-μPAD, it can detect 0-200 ng/mL of Trx-1, and the prepared 3D-μPAD Trx-1 sensor displays excellent selectivity. Moreover, by analyzing the concentration of Trx-1 in real patients and healthy individuals' blood serum samples using the 3D-μPAD, and comparing results to ELISA, it can be confirmed that the 3D-μPAD is a good tool for cancer diagnosis.
Collapse
|
13
|
Temurok N, Leon F, Pinchon E, Clot M, Foulongne V, Cantaloube JF, Vande Perre P, Fournier-Wirth C, Molès JP, Daynès A. Magnetic field-enhanced agglutination as a readout for rapid serologic assays with human plasma. Talanta 2021; 233:122407. [PMID: 34215097 DOI: 10.1016/j.talanta.2021.122407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
Recent virus outbreaks have revealed a critical need for large scale serological assays. However, many available tests either require a cumbersome, costly apparatus or lack the availability of full automation. In order to address these limitations, we describe a homogeneous assay for antibody detection via measurement of superparamagnetic particles agglutination. Application of a magnetic field permits to overcome the limitations governed by Brownian translational diffusion in conventional assays and results in an important acceleration of the aggregation process as well as an improvement of the limit of detection. Furthermore, the use of protein-concentrated fluid such as 5 times-diluted human plasma does not impair the performances of the method. Screening of human plasma samples shows a strict discrimination between seropositive and seronegative samples in an assay duration as short as 14 s. The sensitivity of this method, combined with its quickness and simplicity, makes it a promising diagnostic tool.
Collapse
Affiliation(s)
- Nevzat Temurok
- HORIBA ABX SAS, Parc Euromédecine, Rue du Caducée BP 7290, 34184, Montpellier, CEDEX 4, France
| | - Fanny Leon
- Pathogénèse et Contrôle des infections chroniques et émergentes, Université de Montpellier, EFS, Inserm, Université des Antilles, 60 rue de Navacelles, 34394, Montpellier, Cedex 5, France
| | - Elena Pinchon
- Pathogénèse et Contrôle des infections chroniques et émergentes, Université de Montpellier, EFS, Inserm, Université des Antilles, 60 rue de Navacelles, 34394, Montpellier, Cedex 5, France
| | - Martine Clot
- HORIBA ABX SAS, Parc Euromédecine, Rue du Caducée BP 7290, 34184, Montpellier, CEDEX 4, France
| | - Vincent Foulongne
- Pathogénèse et Contrôle des infections chroniques et émergentes, Université de Montpellier, EFS, Inserm, Université des Antilles, 60 rue de Navacelles, 34394, Montpellier, Cedex 5, France
| | - Jean-François Cantaloube
- Pathogénèse et Contrôle des infections chroniques et émergentes, Université de Montpellier, EFS, Inserm, Université des Antilles, 60 rue de Navacelles, 34394, Montpellier, Cedex 5, France
| | - Philippe Vande Perre
- Pathogénèse et Contrôle des infections chroniques et émergentes, Université de Montpellier, EFS, Inserm, Université des Antilles, 60 rue de Navacelles, 34394, Montpellier, Cedex 5, France
| | - Chantal Fournier-Wirth
- Pathogénèse et Contrôle des infections chroniques et émergentes, Université de Montpellier, EFS, Inserm, Université des Antilles, 60 rue de Navacelles, 34394, Montpellier, Cedex 5, France
| | - Jean-Pierre Molès
- Pathogénèse et Contrôle des infections chroniques et émergentes, Université de Montpellier, EFS, Inserm, Université des Antilles, 60 rue de Navacelles, 34394, Montpellier, Cedex 5, France
| | - Aurélien Daynès
- HORIBA ABX SAS, Parc Euromédecine, Rue du Caducée BP 7290, 34184, Montpellier, CEDEX 4, France.
| |
Collapse
|
14
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
15
|
Kim H, Chung DR, Kang M. A new point-of-care test for the diagnosis of infectious diseases based on multiplex lateral flow immunoassays. Analyst 2019; 144:2460-2466. [PMID: 30849145 DOI: 10.1039/c8an02295j] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infectious diseases are transmissible or communicable illnesses and can spread quickly in some areas and become epidemics. It is critical to quickly diagnose initial infections and prevent further spread through in vitro diagnosis. However, current detection strategies have exhibited a lack of balance with regard to accuracy, time consumption, and portability until recently (e.g. serology, culturing, molecular tests, etc.). Alternatively, many studies have focused on point-of-care testing (POCT), which combines simple, rapid, and exact on-site diagnostic platforms. Moreover, multiplex detectability is necessary for emergency treatment depending on the stage of the disease or interactional infections. The lateral flow assay (LFA) is the most popular diagnostic tool that meets the required standards for colorimetric assays. Here, we review lateral flow assays based on the immune reactions for the simultaneous diagnosis of infectious diseases as the POC test. The assays employed various forms and approaches in terms of the multiplexing level system for improving the sensitivity and specificity. We briefly describe the state-of-the-art infection diagnostic methods and published performances that have been classified into three categories based on the application forms of the lateral flow immunoassay. Also, we discuss further uses of LFA and other technologies for more effective infectious disease POCT.
Collapse
Affiliation(s)
- Hanbi Kim
- Smart Healthcare & Device Research Center, Samsung Medical Center, Seoul, South Korea.
| | - Doo-Ryeon Chung
- Center for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea and Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea and Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Minhee Kang
- Smart Healthcare & Device Research Center, Samsung Medical Center, Seoul, South Korea. and Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
16
|
Mahmoudi T, de la Guardia M, Shirdel B, Mokhtarzadeh A, Baradaran B. Recent advancements in structural improvements of lateral flow assays towards point-of-care testing. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Purr F, Eckardt MF, Kieserling J, Gronwald PL, Burg TP, Dietzel A. Robust Smartphone Assisted Biosensing Based on Asymmetric Nanofluidic Grating Interferometry. SENSORS 2019; 19:s19092065. [PMID: 31058818 PMCID: PMC6540137 DOI: 10.3390/s19092065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
Point-of-care systems enable fast therapy decisions on site without the need of any healthcare infrastructure. In addition to the sensitive detection, stable measurement by inexperienced persons outside of laboratory facilities is indispensable. A particular challenge in field applications is to reduce interference from environmental factors, such as temperature, to acceptable levels without sacrificing simplicity. Here, we present a smartphone-based point-of-care sensor. The method uses an optofluidic grating composed of alternating detection and reference channels arranged as a reflective phase grating. Biomolecules adsorbing to the detection channel alter the optical path length, while the parallel reference channels enable a direct common mode rejection within a single measurement. The optical setup is integrated in a compact design of a mobile readout device and the usability is ensured by a smartphone application. Our results show that different ambient temperatures do not have any influence on the signal. In a proof-of concept experiment we measured the accumulation of specific molecules in functionalized detection channels in real-time and without the need of any labeling. Therefore, the channel walls have been modified with biotin as capture molecules and the specific binding of streptavidin was detected. A mobile, reliable and robust point-of-care device has been realized by combining an inherently differential measurement concept with a smartphone-based, mobile readout device.
Collapse
Affiliation(s)
- Foelke Purr
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
- Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Max-Frederik Eckardt
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
| | - Jonas Kieserling
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
| | - Paul-Luis Gronwald
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
| | - Thomas P Burg
- Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, 64283 Darmstadt, Germany.
| | - Andreas Dietzel
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|