1
|
Oushyani Roudsari Z, Karami Y, Khoramrooz SS, Rouhi S, Ghasem H, Khatami SH, Alizadeh M, Ahmad Khosravi N, Mansoriyan A, Ghasemi E, Movahedpour A, Dargahi Z. Electrochemical and optical biosensors for the detection of E. Coli. Clin Chim Acta 2024; 565:119984. [PMID: 39401653 DOI: 10.1016/j.cca.2024.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
E. coli is a common pathogenic microorganism responsible for numerous food and waterborne illnesses. Traditional detection methods often require long, multi-step processes and specialized equipment. Electrochemical and optical biosensors offer promising alternatives due to their high sensitivity, selectivity, and real-time monitoring capabilities. Recent advancements in sensor development focus on various techniques for detecting E. coli, including optical (fluorescence, colorimetric analysis, surface-enhanced Raman spectroscopy, surface plasmon resonance, localized surface plasmon resonance, chemiluminescence) and electrochemical (amperometric, voltammetry, impedance, potentiometric). Herein, the latest advancements in optical and electrochemical biosensors created for identifying E. coli with an emphasis on surface modifications employing nanomaterials and biomolecules are outlined in this review. Electrochemical biosensors exploit the unique electrochemical properties of E. coli or its specific biomolecules to generate a measurable signal. In contrast, optical biosensors rely on interactions between E. coli and optical elements to generate a detectable response. Moreover, optical detection has been exploited in portable devices such as smart phones and paper-based sensors. Different types of electrodes, nanoparticles, antibodies, aptamers, and fluorescence-based systems have been employed to enhance the sensitivity and specificity of these biosensors. Integrating nanotechnology and biorecognition (which bind to a specific region of the E. coli) elements has enabled the development of portable and miniaturized devices for on-site and point-of-care (POC) applications. These biosensors have demonstrated high sensitivity and offer low detection limits for E. coli detection. The convergence of electrochemical and optical technologies promises excellent opportunities to revolutionize E. coli detection, improving food safety and public health.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yousof Karami
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Hassan Ghasem
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Ahmad Khosravi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Mansoriyan
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Zahra Dargahi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Xu M, Shi B, Li H, Mai X, Mi L, Ma J, Zhu X, Wang G, Fei Y. Development of a carboxymethyl chitosan functionalized slide for small molecule detection using oblique-incidence reflectivity difference technology. BIOMEDICAL OPTICS EXPRESS 2024; 15:5947-5959. [PMID: 39421793 PMCID: PMC11482164 DOI: 10.1364/boe.534563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Label-free optical biosensors have become powerful tools in the study of biomolecular interactions without the need for labels. High throughput and low detection limit are desirable for rapid and accurate biomolecule detection. The oblique-incidence reflectivity difference (OI-RD) technique is capable of detecting thousands of biomolecular interactions in a high-throughput mode, specifically for biomolecules larger than 1000 Da. In order to enhance the detection capability of OI-RD for small molecules (typically < 500 Da), we have developed a three-dimensional biochip that utilized carboxymethyl chitosan (CMCS) functionalized slides. By investigating various factors such as sonication time, protein immobilization time, CMCS molecular weight, and glutaraldehyde (GA) functionalization time, we have achieved a detection limit of 6.8 pM for avidin (68 kDa). Furthermore, accurate detection of D-biotin with a molecular weight of 244 Da has also been achieved. This paper presents an effective solution for achieving both high throughput and low detection limits using the OI-RD technique in the field of biomolecular interaction detection.
Collapse
Affiliation(s)
- Mengjing Xu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Quzhou Fudan Institute, 108 Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, China
| | - Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Haofeng Li
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Xiaohan Mai
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Xiangdong Zhu
- Department of Physics, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Quzhou Fudan Institute, 108 Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Frigoli M, Krupa MP, Hooyberghs G, Lowdon JW, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Sensors for Antibiotic Detection: A Focused Review with a Brief Overview of Commercial Technologies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5576. [PMID: 39275486 PMCID: PMC11398233 DOI: 10.3390/s24175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global health, powered by pathogens that become increasingly proficient at withstanding antibiotic treatments. This review introduces the factors contributing to antimicrobial resistance (AMR), highlighting the presence of antibiotics in different environmental and biological matrices as a significant contributor to the resistance. It emphasizes the urgent need for robust and effective detection methods to identify these substances and mitigate their impact on AMR. Traditional techniques, such as liquid chromatography-mass spectrometry (LC-MS) and immunoassays, are discussed alongside their limitations. The review underscores the emerging role of biosensors as promising alternatives for antibiotic detection, with a particular focus on electrochemical biosensors. Therefore, the manuscript extensively explores the principles and various types of electrochemical biosensors, elucidating their advantages, including high sensitivity, rapid response, and potential for point-of-care applications. Moreover, the manuscript investigates recent advances in materials used to fabricate electrochemical platforms for antibiotic detection, such as aptamers and molecularly imprinted polymers, highlighting their role in enhancing sensor performance and selectivity. This review culminates with an evaluation and summary of commercially available and spin-off sensors for antibiotic detection, emphasizing their versatility and portability. By explaining the landscape, role, and future outlook of electrochemical biosensors in antibiotic detection, this review provides insights into the ongoing efforts to combat the escalating threat of AMR effectively.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Mikolaj P Krupa
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Geert Hooyberghs
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
4
|
Almenhali AZ, Eissa S. Aptamer-based biosensors for the detection of neonicotinoid insecticides in environmental samples: A systematic review. Talanta 2024; 275:126190. [PMID: 38703483 DOI: 10.1016/j.talanta.2024.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.
Collapse
Affiliation(s)
- Asma Zaid Almenhali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
5
|
Azuaje-Hualde E, Alonso-Cabrera JA, de Pancorbo MM, Benito-Lopez F, Basabe-Desmonts L. Integration of secreted signaling molecule sensing on cell monitoring platforms: a critical review. Anal Bioanal Chem 2024:10.1007/s00216-024-05435-1. [PMID: 39048740 DOI: 10.1007/s00216-024-05435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Monitoring cell secretion in complex microenvironments is crucial for understanding cellular behavior and advancing physiological and pathological research. While traditional cell culture methods, including organoids and spheroids, provide valuable models, real-time monitoring of cell secretion of signaling molecules remains challenging. Integrating advanced monitoring technologies into these systems often disrupts the delicate balance of the microenvironment, making it difficult to achieve sensitivity and specificity. This review explored recent strategies for integrating the monitoring of cell secretion of signaling molecules, crucial for understanding and replicating cell microenvironments, within cell culture platforms, addressing challenges such as non-adherent cell models and the focus on single-cell methodologies. We highlight advancements in biosensors, microfluidics, and three-dimensional culture methods, and discuss their potential to enhance real-time, multiplexed cell monitoring. By examining the advantages, limitations, and future prospects of these technologies, we aim to contribute to the development of integrated systems that facilitate comprehensive cell monitoring, ultimately advancing biological research and pharmaceutical development.
Collapse
Affiliation(s)
- Enrique Azuaje-Hualde
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juncal A Alonso-Cabrera
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| |
Collapse
|
6
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Wang S, Guang J, Gao Y, Fan B, Liang Y, Pan J, Li L, Meng W, Hu F. Fluorescent DNA tetrahedral probe with catalytic hairpin self-assembly reaction for imaging of miR-21 and miR-155 in living cells. Mikrochim Acta 2024; 191:462. [PMID: 38990374 DOI: 10.1007/s00604-024-06529-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
A CHA-based fluorescent DNA tetrahedral probe (FDTp) has been designed to detect the microRNAs miR-21 and miR-155 sensitively and specifically in living cells. The design consisted of functional elements (H1, H2, and Protector) connected to a DNA tetrahedron modified with two pairs of fluorophores and quenching groups. In the presence of miR-21, the chain displacement effect was triggered and Cy3 fluorescence was emitted. In the presence of miR-155, the signal of the catalytic hairpin assembly (CHA) between H1 and H2 on FDTp was amplified, making the fluorescence of FAM sensitive to miR-155. Using this method, the detection limit for miR-155 was 5 pM. The FDTp successfully imaged miR-21 and miR-155 in living cells and distinguished a variety of cell lines based on their expression levels of miR-21 and miR-155. The detection and imaging of dual targets in this design ensured the accuracy of tumor diagnosis and provided a new method for early tumor diagnosis.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiejie Guang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
- Pharmacy Department, Huangshan City People's Hospital, Liyuan Road, Tunxi District, Huangshan, 245000, China
| | - Yahui Gao
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Bingyuan Fan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Liang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinru Pan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Li
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Wei Meng
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China.
| | - Fang Hu
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Mansouri S. Recent Advancements in Molecularly Imprinted Polymers Based Aptasensors: Critical Role of Nanomaterials for the Efficient Food Safety Analysis. Crit Rev Anal Chem 2024:1-16. [PMID: 38754013 DOI: 10.1080/10408347.2024.2351826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Biosensors are being studied extensively for their ability to detect and analyze molecules. There has been a growing interest in combining molecular imprinted polymers (MIPs) and aptamers to create hybrid recognition elements that offer advantages such as target binding, sensitivity, selectivity, and stability. These hybrid elements have been successfully used in identifying a wide range of analytes in food samples. However, the application of MIP-based aptasensors in different sensing approaches is still challenging due to the low conductivity of MIPs-aptamers and limited adsorption capacity of MIPs. To address these limitations, researchers have been exploring the use of nanomaterials (NMs) to design efficient multiple-recognition systems that exploit the synergies between aptamers and MIPs. These hybrid systems can enhance the sensitivity and selectivity of MIP-based aptasensors in quantifying analytical samples. This review provides a comprehensive overview of recent advancements in the field of MIP-based aptasensors. It also introduces technologies that combine MIPs and aptamers to achieve higher sensitivity and selectivity in quantifying analytical samples. The review also highlights potential future trends and practical approaches that can be employed to address the limitations of MIP-based aptasensors, including the use of new NMs, the development of new fabrication techniques, and the integration of MIP-based aptasensors with other analytical tools.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabiain
- Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Tunis, Tunisia
| |
Collapse
|
9
|
Fattahi M, Maghsudlu M, Razipour M, Movahedpour A, Ghadami M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Ghasemi E, Ghasemi H, Aiiashi S, Ghadami E. MicroRNA biosensors for detection of glioblastoma. Clin Chim Acta 2024; 556:117829. [PMID: 38355000 DOI: 10.1016/j.cca.2024.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor.The discovery of microRNAs and their unique properties have made them suitable tools as biomarkers for cancer diagnosis, prognosis, and evaluation of therapeutic response using different types of nanomaterials as sensitive and specific biosensors. In this review, we discuss microRNA-based electrochemical biosensing systems and the use of nanoparticles in the evolving development of microRNA-based biosensors in glioblastoma.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Mohadese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Abdul Wahab MR, Palaniyandi T, Viswanathan S, Baskar G, Surendran H, Gangadharan SGD, Sugumaran A, Sivaji A, Kaliamoorthy S, Kumarasamy S. Biomarker-specific biosensors revolutionise breast cancer diagnosis. Clin Chim Acta 2024; 555:117792. [PMID: 38266968 DOI: 10.1016/j.cca.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer is the most common cancer among women across the globe. In order to treat breast cancer successfully, it is crucial to conduct a comprehensive assessment of the condition during its initial stages. Although mammogram screening has long been a common method of breast cancer screening, high rates of type I error and type II error results as well as radiation exposure have always been of concern. The outgrowth cancer mortality rate is primarily due to delayed diagnosis, which occurs most frequently in a metastatic III or IV stage, resulting in a poor prognosis after therapy. Traditional detection techniques require identifying carcinogenic properties of cells, such as DNA or RNA alterations, conformational changes and overexpression of certain proteins, and cell shape, which are referred to as biomarkers or analytes. These procedures are complex, long-drawn-out, and expensive. Biosensors have recently acquired appeal as low-cost, simple, and super sensitive detection methods for analysis. The biosensor approach requires the existence of biomarkers in the sample. Thus, the development of novel molecular markers for diverse forms of cancer is a rising complementary affair. These biosensor devices offer two major advantages: (1) a tiny amount of blood collected from the patient is sufficient for analysis, and (2) it could help clinicians swiftly select and decide on the best therapy routine for the individual. This review will include updates on prospective cancer markers and biosensors in cancer diagnosis, as well as the associated detection limitations, with a focus on biosensor development for marker detection.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - S G D Gangadharan
- Department of Medical Oncology, Madras Medical College, R. G. G. G. H., Chennai, Tamil Nadu, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutical Sciences, Assam University, (A Central University), Silchar, Assam, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | - Senthilkumar Kaliamoorthy
- Department of Electronics and Communication Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Saravanan Kumarasamy
- Department of Electrical and Electronics Engineering, Dr. M.G.R Educational and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Wang Y, Wang Z, Tong Y, Zhang D, Yun K, Yan J, Niu W. Aptamer-based fluorescent sensor for highly sensitive detection of methamphetamine. LUMINESCENCE 2024; 39:e4687. [PMID: 38332476 DOI: 10.1002/bio.4687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
The construction of a fluorescence aptamer sensor was achieved by employing the fundamental principle of fluorescence resonance energy transfer. By employing molecular modeling technologies to identify the binding site, the high-affinity aptamer APT-40nt was derived from the whole sequence and utilized on the graphene oxide (GO) fluorescent platform for the purpose of achieving a highly sensitive detection of methamphetamine (METH). The aptamer tagged with fluorescein (FAM) dye undergoes quenching in the presence of GO due to π-stacking interaction. With the addition of the target, the aptamer that has been tagged was detached from the GO surface, forming a stable complex with METH. This process resulted in fluorescence restoration of the system, and the degree of fluorescence restoration was proportional to METH concentration in the linear range of 1-50 and 50-200 nM. Notably, under optimized conditions, the detection limit of this aptasensor was as low as 0.78 nM, which meets the detection limit requirements of METH detection in saliva and urine in some countries and regions. Moreover, other common illicit drugs and metabolites had minimizing interference with the determination. The established aptasensor, therefore, has been successfully applied to detect METH in saliva and urine samples and exhibited satisfactory recoveries (87%-111%). This aptasensor has the advantages of low detection limit, excellent selectivity, ease of operation, and low cost, providing a promising strategy for on-site detection of METH in saliva and urine.
Collapse
Affiliation(s)
- Yandan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Zheyu Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Yishuo Tong
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Dan Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| | - Weifen Niu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, Shanxi, P. R. China
| |
Collapse
|
12
|
Chieng A, Wan Z, Wang S. Recent Advances in Real-Time Label-Free Detection of Small Molecules. BIOSENSORS 2024; 14:80. [PMID: 38391999 PMCID: PMC10886562 DOI: 10.3390/bios14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The detection and analysis of small molecules, typically defined as molecules under 1000 Da, is of growing interest ranging from the development of small-molecule drugs and inhibitors to the sensing of toxins and biomarkers. However, due to challenges such as their small size and low mass, many biosensing technologies struggle to have the sensitivity and selectivity for the detection of small molecules. Notably, their small size limits the usage of labeled techniques that can change the properties of small-molecule analytes. Furthermore, the capability of real-time detection is highly desired for small-molecule biosensors' application in diagnostics or screening. This review highlights recent advances in label-free real-time biosensing technologies utilizing different types of transducers to meet the growing demand for small-molecule detection.
Collapse
Affiliation(s)
- Andy Chieng
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (A.C.); (Z.W.)
- School of Molecular Science, Arizona State University, Tempe, AZ 85287, USA
| | - Zijian Wan
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (A.C.); (Z.W.)
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (A.C.); (Z.W.)
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
13
|
Panhwar S, Keerio HA, Ilhan H, Boyacı IH, Tamer U. Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection. Mol Biotechnol 2023:10.1007/s12033-023-00926-5. [PMID: 37914863 DOI: 10.1007/s12033-023-00926-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Civil Engineering, National University of Sciences and Technology, Quetta, 24090, Balochistan, Pakistan.
| | - Hareef Ahmed Keerio
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, Altinordu, 52200, Ordu, Turkey
| | - Ismail Hakkı Boyacı
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Metu MEMS Center, Ankara, Turkey.
| |
Collapse
|
14
|
Jafari B, Gholizadeh E, Jafari B, Zhoulideh M, Adibnia E, Ghafariasl M, Noori M, Golmohammadi S. Highly sensitive label-free biosensor: graphene/CaF 2 multilayer for gas, cancer, virus, and diabetes detection with enhanced quality factor and figure of merit. Sci Rep 2023; 13:16184. [PMID: 37758823 PMCID: PMC10533514 DOI: 10.1038/s41598-023-43480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
One of the primary goals for the researchers is to create a high-quality sensor with a simple structure because of the urgent requirement to identify biomolecules at low concentrations to diagnose diseases and detect hazardous chemicals for health early on. Recently graphene has attracted much interest in the field of improved biosensors. Meanwhile, graphene with new materials such as CaF2 has been widely used to improve the applications of graphene-based sensors. Using the fantastic features of the graphene/CaF2 multilayer, this article proposes an improvement sensor in the sensitivity (S), the figure of merit (FOM), and the quality factor (Q). The proposed sensor is based on the five-layers graphene/dielectric grating integrated with a Fabry-Perot cavity. By tuning graphene chemical potential (µc), due to the semi-metal features of graphene, the surface plasmon resonance (SPR) waves excited at the graphene/dielectric boundaries. Due to the vertical polarization of the source to the gratings and the symmetry of the electric field, both corners of the grating act as electric dipoles, and this causes the propagation of plasmonic waves on the graphene surface to propagate towards each other. Finally, it causes Fabry-Perot (FP) interference on the surface of graphene in the proposed structure's active medium (the area where the sample is located). In this article, using the inherent nature of FP interference and its S to the environment's refractive index (RI), by changing a minimal amount in the RI of the sample, the resonance wavelength (interferometer order) shifts sharply. The proposed design can detect and sense some cancers, such as Adrenal Gland Cancer, Blood Cancer, Breast Cancer I, Breast Cancer II, Cervical Cancer, and skin cancer precisely. By optimizing the structure, we can achieve an S as high as 9000 nm/RIU and a FOM of about 52.14 for the first resonance order (M1). Likewise, the remarkable S of 38,000 nm/RIU and the FOM of 81 have been obtained for the second mode (M2). In addition, the proposed label-free SPR sensor can detect changes in the concentration of various materials, including gases and biomolecules, hemoglobin, breast cancer, diabetes, leukemia, and most alloys, with an accuracy of 0.001. The proposed sensor can sense urine concentration with a maximum S of 8500 nm/RIU and cancers with high S in the 6000 nm/RIU range to 7000 nm/RIU. Also, four viruses, such as M13 bacteriophage, HIV type one, Herpes simplex type 1, and influenza, have been investigated, showing Maximum S (for second resonance mode of λR(M2) of 8000 nm/RIU (λR(M2) = 11.2 µm), 12,000 nm/RIU (λR(M2) = 10.73 µm), 38,000 nm/RIU (λR(M2) = 11.78 µm), and 12,000 nm/RIU (λR(M2) = 10.6 µm), respectively, and the obtained S for first resonance mode (λR(M1)) for mentioned viruses are 4740 nm/RIU (λR(M1) = 8.7 µm), 8010 nm/RIU (λR(M1) = 8.44 µm), 8100 nm/RIU (λR(M1) = 10.15 µm), and 9000 (λR(M1) = 8.36 µm), respectively.
Collapse
Affiliation(s)
- Behnam Jafari
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran.
| | - Elnaz Gholizadeh
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Bahram Jafari
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
| | - Moheimen Zhoulideh
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov university), Moscow, Russia
| | - Ehsan Adibnia
- Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Mahdi Ghafariasl
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| | - Mohammad Noori
- Electrical Engineering Department, Technical and Engineering Faculty, University of Bonab, Bonab, East Azerbaijan, Iran
| | - Saeed Golmohammadi
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| |
Collapse
|
15
|
Calvo-Lozano O, Hernández-López L, Gomez L, Carné-Sánchez A, von Baeckmann C, Lechuga LM, Maspoch D. Integration of Metal-Organic Polyhedra onto a Nanophotonic Sensor for Real-Time Detection of Nitrogenous Organic Pollutants in Water. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39523-39529. [PMID: 37566722 PMCID: PMC10450679 DOI: 10.1021/acsami.3c07213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The grave health and environmental consequences of water pollution demand new tools, including new sensing technologies, for the immediate detection of contaminants in situ. Herein, we report the integration of metal-organic cages or polyhedra (MOCs/MOPs) within a nanophotonic sensor for the rapid, direct, and real-time detection of small (<500 Da) pollutant molecules in water. The sensor, a bimodal waveguide silicon interferometer incorporating Rh(II)-based MOPs as specific chemical receptors, does not require sample pretreatment and enables minimal expenditure of time and reagents. We validated our sensor for the detection of two common pollutants: the industrial corrosion inhibitor 1,2,3-benzotriazole (BTA) and the systemic insecticide imidacloprid (IMD). The sensor offers a fast time-to-result response (15 min), high sensitivity, and high accuracy. The limit of detection (LOD) in tap water for BTA is 0.068 μg/mL and for IMD, 0.107 μg/mL, both of which are below the corresponding toxicity thresholds defined by the European Chemicals Agency (ECHA). By combining innovative chemical molecular receptors such as MOPs with state-of-the-art photonic sensing technologies, our research opens the path to implement competitive sensor devices for in situ environmental monitoring.
Collapse
Affiliation(s)
- Olalla Calvo-Lozano
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BNN,
and Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura Hernández-López
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Leyre Gomez
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Arnau Carné-Sánchez
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Cornelia von Baeckmann
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laura M. Lechuga
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BNN,
and Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Seymour E, Ekiz Kanik F, Diken Gür S, Bakhshpour-Yucel M, Araz A, Lortlar Ünlü N, Ünlü MS. Solid-Phase Optical Sensing Techniques for Sensitive Virus Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:5018. [PMID: 37299745 PMCID: PMC10255700 DOI: 10.3390/s23115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Viral infections can pose a major threat to public health by causing serious illness, leading to pandemics, and burdening healthcare systems. The global spread of such infections causes disruptions to every aspect of life including business, education, and social life. Fast and accurate diagnosis of viral infections has significant implications for saving lives, preventing the spread of the diseases, and minimizing social and economic damages. Polymerase chain reaction (PCR)-based techniques are commonly used to detect viruses in the clinic. However, PCR has several drawbacks, as highlighted during the recent COVID-19 pandemic, such as long processing times and the requirement for sophisticated laboratory instruments. Therefore, there is an urgent need for fast and accurate techniques for virus detection. For this purpose, a variety of biosensor systems are being developed to provide rapid, sensitive, and high-throughput viral diagnostic platforms, enabling quick diagnosis and efficient control of the virus's spread. Optical devices, in particular, are of great interest due to their advantages such as high sensitivity and direct readout. The current review discusses solid-phase optical sensing techniques for virus detection, including fluorescence-based sensors, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), optical resonators, and interferometry-based platforms. Then, we focus on an interferometric biosensor developed by our group, the single-particle interferometric reflectance imaging sensor (SP-IRIS), which has the capability to visualize single nanoparticles, to demonstrate its application for digital virus detection.
Collapse
Affiliation(s)
- Elif Seymour
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M4P 1R2, Canada;
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Fulya Ekiz Kanik
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (F.E.K.); (M.B.-Y.)
| | - Sinem Diken Gür
- Department of Biology, Hacettepe University, Ankara 06800, Türkiye;
| | - Monireh Bakhshpour-Yucel
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (F.E.K.); (M.B.-Y.)
- Department of Chemistry, Bursa Uludag University, Bursa 16059, Türkiye
| | - Ali Araz
- Department of Chemistry, Dokuz Eylül University, Izmir 35390, Türkiye;
| | - Nese Lortlar Ünlü
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - M. Selim Ünlü
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (F.E.K.); (M.B.-Y.)
| |
Collapse
|
17
|
Wang Q, Ai Z, Guo Q, Wang X, Dai C, Wang H, Sun J, Tang Y, Jiang D, Pei X, Chen R, Gou J, Yu L, Ding J, Wee ATS, Liu Y, Wei D. Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of Small Molecules. J Am Chem Soc 2023; 145:10035-10044. [PMID: 37097713 DOI: 10.1021/jacs.2c13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Compared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, p-nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent. We perform testing in buffer, artificial urine, sweat, saliva, and diabetic mouse serum. The limit of detection is down to 10-19 M methylglyoxal, about 5 orders of magnitude lower than existing assay technologies. This work develops a photo-enhanced FET platform to detect small molecules or other neutral species with enhanced sensitivity for applications in fields such as biochemical research, health monitoring, and disease diagnosis.
Collapse
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Zhaolin Ai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Qianying Guo
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Hancheng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yanan Tang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xinjie Pei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Renzhong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Jian Gou
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Bruce N, Farrell F, Xie E, Scullion MG, Haughey AM, Gu E, Dawson MD, Laurand N. MicroLED biosensor with colloidal quantum dots and smartphone detection. BIOMEDICAL OPTICS EXPRESS 2023; 14:1107-1118. [PMID: 36950244 PMCID: PMC10026578 DOI: 10.1364/boe.478276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
A fluorescence sensor with the capability for spatially multiplexed measurements utilizing smartphone detection is presented. Bioconjugated quantum dots are used as the fluorescent tag and are excited using a blue-emitting microLED (µLED). The 1-dimensional GaN µLED array is butt-coupled to one edge of the glass slide to take advantage of total internal reflection fluorescence (TIRF) principles. The bioassays on the top surface of the glass waveguide are excited and the resultant fluorescence is detected with the smartphone. The red, green, and blue channels of the digital image are utilized to spectrally separate the excitation light from the fluorescence for analysis. Using a biotin-functionalized glass slide as proof of principle, we have shown that streptavidin conjugated quantum dots can be detected down to a concentration of 8 nM.
Collapse
Affiliation(s)
- Natalie Bruce
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
- Fraunhofer Centre for Applied Photonics, 99 George Street, Glasgow, UK
| | - Francesca Farrell
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| | - Enyuan Xie
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| | - Mark G. Scullion
- Fraunhofer Centre for Applied Photonics, 99 George Street, Glasgow, UK
| | | | - Erdan Gu
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| | - Martin D. Dawson
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
- Fraunhofer Centre for Applied Photonics, 99 George Street, Glasgow, UK
| | - Nicolas Laurand
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| |
Collapse
|
19
|
Teniou A, Rhouati A, Madi IAE, Mouhoub R, Catanante G, Mashifana T, Vasseghian Y, Berkani M. Colorimetric Detection of Hemoglobin by Aptamer-Based Biosensor. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Ahlem Teniou
- Bioengineering Laboratory, Higher School of Biotechnology, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Amina Rhouati
- Bioengineering Laboratory, Higher School of Biotechnology, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Ibrahim Alaa eddine Madi
- Bioengineering Laboratory, Higher School of Biotechnology, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
- Biotechnologies Laboratory, Higher School of Biotechnology, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Riane Mouhoub
- Bioengineering Laboratory, Higher School of Biotechnology, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
- Biotechnologies Laboratory, Higher School of Biotechnology, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Gaëlle Catanante
- BAE Laboratory, Perpignan University, F-66100 Perpignan, France
- LBBM Laboratoire de Biodiversité et Biotechnologies Microbiennes, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Tebogo Mashifana
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
- School of Engineering, Lebanese American University, Byblos, Lebanon
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Mohammed Berkani
- Biotechnologies Laboratory, Higher School of Biotechnology, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| |
Collapse
|
20
|
Nikkhah M, Karami S, Khatami SH, Taheri-Anganeh M, Savardashtaki A, Mahmoodzadeh A, Shabaninejad Z, Vakili O, Mousavi P, Ghanizadeh Gerayeli F, Behrouj H, Ghasemi H, Movahedpour A. Review of electrochemical and optical biosensors for testosterone measurement. Biotechnol Appl Biochem 2023; 70:318-329. [PMID: 35484728 DOI: 10.1002/bab.2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/09/2022] [Indexed: 11/09/2022]
Abstract
Testosterone is an anabolic steroid and a major sex hormone in males. It plays vital roles, including developing the testis, penis, and prostate, increasing muscle and bone, and sperm production. In both men and women, testosterone levels should be in normal ranges. Besides, testosterone and its analogs are major global contributors to doping in sport. Due to the importance of testosterone testing, novel, accurate biosensors have been developed. This review summarizes the various methods for testosterone measurement. Also, recent optical and electrochemical approaches for the detection of testosterone and its analogs have been discussed.
Collapse
Affiliation(s)
- Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajedeh Karami
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farhad Ghanizadeh Gerayeli
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | | |
Collapse
|
21
|
Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes. J Pharm Biomed Anal 2023; 223:115120. [DOI: 10.1016/j.jpba.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
22
|
Prospective analytical role of sensors for environmental screening and monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Raeisi H, Azimirad M, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Rapid-format recombinant antibody-based methods for the diagnosis of Clostridioides difficile infection: Recent advances and perspectives. Front Microbiol 2022; 13:1043214. [PMID: 36523835 PMCID: PMC9744969 DOI: 10.3389/fmicb.2022.1043214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 08/30/2023] Open
Abstract
Clostridioides difficile, the most common cause of nosocomial diarrhea, has been continuously reported as a worldwide problem in healthcare settings. Additionally, the emergence of hypervirulent strains of C. difficile has always been a critical concern and led to continuous efforts to develop more accurate diagnostic methods for detection of this recalcitrant pathogen. Currently, the diagnosis of C. difficile infection (CDI) is based on clinical manifestations and laboratory tests for detecting the bacterium and/or its toxins, which exhibit varied sensitivity and specificity. In this regard, development of rapid diagnostic techniques based on antibodies has demonstrated promising results in both research and clinical environments. Recently, application of recombinant antibody (rAb) technologies like phage display has provided a faster and more cost-effective approach for antibody production. The application of rAbs for developing ultrasensitive diagnostic tools ranging from immunoassays to immunosensors, has allowed the researchers to introduce new platforms with high sensitivity and specificity. Additionally, DNA encoding antibodies are directly accessible in these approaches, which enables the application of antibody engineering to increase their sensitivity and specificity. Here, we review the latest studies about the antibody-based ultrasensitive diagnostic platforms for detection of C. difficile bacteria, with an emphasis on rAb technologies.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Tayyab M, Xie P, Sami MA, Raji H, Lin Z, Meng Z, Mahmoodi SR, Javanmard M. A portable analog front-end system for label-free sensing of proteins using nanowell array impedance sensors. Sci Rep 2022; 12:20119. [PMID: 36418852 PMCID: PMC9684124 DOI: 10.1038/s41598-022-23286-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Proteins are useful biomarkers for a wide range of applications such as cancer detection, discovery of vaccines, and determining exposure to viruses and pathogens. Here, we present a low-noise front-end analog circuit interface towards development of a portable readout system for the label-free sensing of proteins using Nanowell array impedance sensing with a form factor of approximately 35cm2. The electronic interface consists of a low-noise lock-in amplifier enabling reliable detection of changes in impedance as low as 0.1% and thus detection of proteins down to the picoMolar level. The sensitivity of our system is comparable to that of a commercial bench-top impedance spectroscope when using the same sensors. The aim of this work is to demonstrate the potential of using impedance sensing as a portable, low-cost, and reliable method of detecting proteins, thus inching us closer to a Point-of-Care (POC) personalized health monitoring system. We have demonstrated the utility of our system to detect antibodies at various concentrations and protein (45 pM IL-6) in PBS, however, our system has the capability to be used for assaying various biomarkers including proteins, cytokines, virus molecules and antibodies in a portable setting.
Collapse
Affiliation(s)
- Muhammad Tayyab
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Pengfei Xie
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Muhammad Ahsan Sami
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Hassan Raji
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Zhongtian Lin
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Zhuolun Meng
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Seyed Reza Mahmoodi
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA.
| |
Collapse
|
25
|
Xia C, Sun J, Wang Q, Chen J, Wang T, Xu W, Zhang H, Li Y, Chang J, Shi Z, Xu C, Cui Q. Label-Free Sensing of Biomolecular Adsorption and Desorption Dynamics by Interfacial Second Harmonic Generation. BIOSENSORS 2022; 12:bios12111048. [PMID: 36421166 PMCID: PMC9688933 DOI: 10.3390/bios12111048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 05/31/2023]
Abstract
Observing interfacial molecular adsorption and desorption dynamics in a label-free manner is fundamentally important for understanding spatiotemporal transports of matter and energy across interfaces. Here, we report a label-free real-time sensing technique utilizing strong optical second harmonic generation of monolayer 2D semiconductors. BSA molecule adsorption and desorption dynamics on the surface of monolayer MoS2 in liquid environments have been all-optically observed through time-resolved second harmonic generation (SHG) measurements. The proposed SHG detection scheme is not only interface specific but also expected to be widely applicable, which, in principle, undertakes a nanometer-scale spatial resolution across interfaces.
Collapse
Affiliation(s)
- Chuansheng Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jianli Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinping Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianjie Wang
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wenxiong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - He Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanyuan Li
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianhua Chang
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zengliang Shi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiannan Cui
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
26
|
Lee T, Kim W, Park J, Lee G. Hemolysis-Inspired, Highly Sensitive, Label-Free IgM Detection Using Erythrocyte Membrane-Functionalized Nanomechanical Resonators. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7738. [PMID: 36363329 PMCID: PMC9654754 DOI: 10.3390/ma15217738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Immunoglobulin detection is important for immunoassays, such as diagnosing infectious diseases, evaluating immune status, and determining neutralizing antibody concentrations. However, since most immunoassays rely on labeling methods, there are limitations on determining the limit of detection (LOD) of biosensors. In addition, although the antigen must be immobilized via complex chemical treatment, it is difficult to precisely control the immobilization concentration. This reduces the reproducibility of the biosensor. In this study, we propose a label-free method for antibody detection using microcantilever-based nanomechanical resonators functionalized with erythrocyte membrane (EM). This label-free method focuses on the phenomenon of antibody binding to oligosaccharides (blood type antigen) on the surface of the erythrocyte. We established a method for extracting the EM from erythrocytes and fabricated an EM-functionalized microcantilever (MC), termed EMMC, by surface-coating EM layers on the MC. When the EMMC was treated with immunoglobulin M (IgM), the bioassay was successfully performed in the linear range from 2.2 pM to 22 nM, and the LOD was 2.0 pM. The EMMC also exhibited excellent selectivity compared to other biomolecules such as serum albumin, γ-globulin, and IgM with different paratopes. These results demonstrate that EMMC-based nanotechnology may be utilized in criminal investigations to identify blood types with minimal amounts of blood or to evaluate individual immunity through virus-neutralizing antibody detection.
Collapse
Affiliation(s)
- Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| | - Woong Kim
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| |
Collapse
|
27
|
Hu C, Zhang Y, Zhou Y, Xiang YJY, Liu ZF, Wang ZH, Feng XS. Tetrodotoxin and Its Analogues in Food: Recent Updates on Sample Preparation and Analytical Methods Since 2012. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12249-12269. [PMID: 36153990 DOI: 10.1021/acs.jafc.2c04106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tetrodotoxin (TTX), found in various organisms including pufferfish, is an extremely potent marine toxin responsible for numerous food poisoning accidents. Due to its serious toxicity and public health threat, detecting TTX and its analogues in diverse food matrices with a simple, fast, efficient method has become a worldwide concern. This review summarizes the advances in sample preparation and analytical methods for the determination of TTX and its analogues, focusing on the latest development over the past five years. Current state-of-the-art technologies, such as solid-phase microextraction, online technology, novel injection technology, two-dimensional liquid chromatography, high-resolution mass spectrometry, newly developed lateral flow immunochromatographic strips, immunosensors, dual-mode aptasensors, and nanomaterials-based approaches, are thoroughly discussed. The advantages and limitations of different techniques, critical comments, and future perspectives are also proposed. This review is expected to provide rewarding insights to the future development and broad application of pretreatment and detection methods for TTX and its analogues.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang-Jia-Yi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
28
|
Qin J, Jiang S, Wang Z, Cheng X, Li B, Shi Y, Tsai DP, Liu AQ, Huang W, Zhu W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS NANO 2022; 16:11598-11618. [PMID: 35960685 DOI: 10.1021/acsnano.2c03310] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metasurfaces are 2D artificial materials consisting of arrays of metamolecules, which are exquisitely designed to manipulate light in terms of amplitude, phase, and polarization state with spatial resolutions at the subwavelength scale. Traditional micro/nano-optical sensors (MNOSs) pursue high sensitivity through strongly localized optical fields based on diffractive and refractive optics, microcavities, and interferometers. Although detections of ultra-low concentrations of analytes have already been demonstrated, the label-free sensing and recognition of complex and unknown samples remain challenging, requiring multiple readouts from sensors, e.g., refractive index, absorption/emission spectrum, chirality, etc. Additionally, the reliability of detecting large, inhomogeneous biosamples may be compromised by the limited near-field sensing area from the localization of light. Here, we review recent advances in metasurface-based MNOSs and compare them with counterparts using micro-optics from aspects of physics, working principles, and applications. By virtue of underlying the physics and design flexibilities of metasurfaces, MNOSs have now been endowed with superb performances and advanced functionalities, leading toward highly integrated smart sensing platforms.
Collapse
Affiliation(s)
- Jin Qin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shibin Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Huang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
29
|
Velusamy K, Periyasamy S, Kumar PS, Rangasamy G, Nisha Pauline JM, Ramaraju P, Mohanasundaram S, Nguyen Vo DV. Biosensor for heavy metals detection in wastewater: A review. Food Chem Toxicol 2022; 168:113307. [PMID: 35917955 DOI: 10.1016/j.fct.2022.113307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Pollution due to heavy metals is a global issue in recent years. Initially, there were fewer contaminants, which has increased exponentially owing to rapid industrialization and various anthropogenic activities. Toxicity due to heavy metals causes a lot of health problems and organ system failure in human beings. It also affects other forms of living beings such as plants, animals and even the microbiota. This has been reported by various press reports and research findings. In this review, the production of heavy metals, associated effects on the environment and the technologies employed for detecting these heavy metals are comprehensively discussed. The analytical instruments, including biosensors, have been found to be more beneficial than other techniques. Biosensor exhibits numerous special features, such as reproducibility, reusability, linearity, sensitivity, selectivity, and stability. Over the last three years, biosensors have also had a detection limit of 65.36 ng/mL for heavy metals. The design of biosensors, features and types were also explained in detail. The limit of detection for the heavy metals in wastewater using biosensors was also included with recent references up to the last five years.
Collapse
Affiliation(s)
- Karthik Velusamy
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - J Mercy Nisha Pauline
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Pradeep Ramaraju
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Sneka Mohanasundaram
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
30
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
31
|
Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022; 218:225-242. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.
Collapse
Affiliation(s)
- Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
32
|
Shahdeo D, Chauhan N, Majumdar A, Ghosh A, Gandhi S. Graphene-Based Field-Effect Transistor for Ultrasensitive Immunosensing of SARS-CoV-2 Spike S1 Antigen. ACS APPLIED BIO MATERIALS 2022; 5:3563-3572. [PMID: 35775242 PMCID: PMC9274923 DOI: 10.1021/acsabm.2c00503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coronavirus disease (COVID-19) is an infectious disease that has posed a global health challenge caused by the SARS-CoV-2 virus. Early management and diagnosis of SARS-CoV-2 are crucial for the timely treatment, traceability, and reduction of viral spread. We have developed a rapid method using a Graphene-based Field-Effect Transistor (Gr-FET) for the ultrasensitive detection of SARS-CoV-2 Spike S1 antigen (S1-Ag). The in-house developed antispike S1 antibody (S1-Ab) was covalently immobilized on the surface of a carboxy functionalized graphene channel using carbodiimide chemistry. Ultraviolet-visible spectroscopy, Fourier-Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Optical Microscopy, Raman Spectroscopy, Scanning Electron Microscopy (SEM), Enzyme-Linked Immunosorbent Assays (ELISA), and device stability studies were conducted to characterize the bioconjugation and fabrication process of Gr-FET. In addition, the electrical response of the device was evaluated by monitoring the change in resistance caused by Ag-Ab interaction in real time. For S1-Ag, our Gr-FET devices were tested in the range of 1 fM to 1 μM with a limit of detection of 10 fM in the standard buffer. The fabricated devices are highly sensitive, specific, and capable of detecting low levels of S1-Ag.
Collapse
Affiliation(s)
- Deepshikha Shahdeo
- DBT-National
Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| | - Neha Chauhan
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
- The
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Majumdar
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
| | - Arindam Ghosh
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
- Centre
for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Sonu Gandhi
- DBT-National
Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| |
Collapse
|
33
|
Fluorescent Biosensors for the Detection of Viruses Using Graphene and Two-Dimensional Carbon Nanomaterials. BIOSENSORS 2022; 12:bios12070460. [PMID: 35884263 PMCID: PMC9312944 DOI: 10.3390/bios12070460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Two-dimensional carbon nanomaterials have been commonly employed in the field of biosensors to improve their sensitivity/limits of detection and shorten the analysis time. These nanomaterials act as efficient transducers because of their unique characteristics, such as high surface area and optical, electrical, and magnetic properties, which in turn have been exploited to create simple, quick, and low-cost biosensing platforms. In this review, graphene and two-dimensional carbon material-based fluorescent biosensors are covered between 2010 and 2021, for the detection of different human viruses. This review specifically focuses on the new developments in graphene and two-dimensional carbon nanomaterials for fluorescent biosensing based on the Förster resonance energy transfer (FRET) mechanism. The high-efficiency quenching capability of graphene via the FRET mechanism enhances the fluorescent-based biosensors. The review provides a comprehensive reference for the different types of carbon nanomaterials employed for the detection of viruses such as Rotavirus, Ebola virus, Influenza virus H3N2, HIV, Hepatitis C virus (HCV), and Hepatitis B virus (HBV). This review covers the various multiplexing detection technologies as a new direction in the development of biosensing platforms for virus detection. At the end of the review, the different challenges in the use of fluorescent biosensors, as well as some insights into how to overcome them, are highlighted.
Collapse
|
34
|
Chen T, Wu F, Li Y, Rozan HE, Chen X, Feng C. Gold Nanoparticle-Functionalized Diatom Biosilica as Label-Free Biosensor for Biomolecule Detection. Front Bioeng Biotechnol 2022; 10:894636. [PMID: 35711633 PMCID: PMC9195615 DOI: 10.3389/fbioe.2022.894636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Diatom biosilica (DBs) is the cell wall of natural diatom called frustule, which is made of porous hydrogenated amorphous silica possessing periodic micro- to nanoscale features. In this study, a simple, sensitive, and label-free photoluminescence (PL) immune-detection platform based on functionalized diatom frustules was developed. Gold nanoparticles (AuNPs) deposited on poly-dopamine-coated diatom frustules via in situ deposition which considerably decreased the intrinsic blue PL intensity of diatom biosilica. Then, goat anti-rabbit immunoglobulin G (IgG) was added to functionalize diatom biosilica-poly-dopamine-AuNPs (DBs-PDA-AuNPs). PL studies revealed that the specific binding with antigen rabbit IgG increased the peak intensity of PL in comparison with the non-complimentary antigen (human IgG). The enhancement in PL intensity of DBs-PDA had a linear correlation with antigen (rabbit IgG) concentration, whose limit of detection (LOD) reached 8 × 10-6 mg/ml. Furthermore, PL detection based on DBs-PDA-AuNPs showed a high detection sensitivity with the LOD as low as 8 × 10-9 mg/ml and spread over almost eight orders of magnitude, making it suitable for the sensitive quantitative analysis of immune complex compared with traditional fluorescence immunoassay. Hence, the study proves that the AuNP-functionalized diatom frustules can serve as an effective biosensor platform for label-free PL-based immunoassay.
Collapse
Affiliation(s)
- Tongtong Chen
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Feifei Wu
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Yang Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hussein E Rozan
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, Qingdao, China
| |
Collapse
|
35
|
Guo C, Wang C, Ma T, Zhang L, Wang F. Integrated refractive index sensor based on an AlN-PSiO 2 hybrid plasmonic microdisk resonator. APPLIED OPTICS 2022; 61:4980-4985. [PMID: 36256173 DOI: 10.1364/ao.458340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/30/2022] [Indexed: 06/16/2023]
Abstract
In this paper, a microdisk resonator (MDR) based on an AlN-PSiO2 hybrid plasmonic waveguide (HPW) and its refractive index (RI) sensing characteristics are investigated. The plasmonic characteristics of the MDR based on the AlN-PSiO2 HPW (APHPW-MDR) in near-infrared wavelengths are studied by using the finite element method. Through the structure parameter optimizations, the propagation length (Lprop) of the APHPW-MDR is ∼165µm, which is ∼2.5 times as long as that of the MDR based on the AlN HPW (AHPW-MDR). The simulation results show that the quality factor (Q) and extinction rate (ER) of the APHPW-MDR are ∼621.3 and ∼30dB, respectively. The RI sensing sensitivity (S) of the RI sensor based on the APHPW-MDR is ∼276.6nm/RIU. The RI sensor based on the APHPW-MDR has wide application prospects in high-performance biochemical sensing, and it can also be used in integrated optical filters, modulators, switches, routers, and delay circuits.
Collapse
|
36
|
Ghaleh HEG, Shahriary A, Izadi M, Farzanehpour M. Advances in early diagnosis of cervical cancer based on biosensors. Biotechnol Bioeng 2022; 119:2305-2312. [DOI: 10.1002/bit.28149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems biology and poisonings instituteBaqiyatallah University of Medical SciencesTehranIran
| | - Morteza Izadi
- Health Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical sciencesTehranIran
| |
Collapse
|
37
|
Through the looking-glass - Recent developments in reflectometry open new possibilities for biosensor applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Progress in smartphone-enabled aptasensors. Biosens Bioelectron 2022; 215:114509. [DOI: 10.1016/j.bios.2022.114509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
|
39
|
Villalba-Rodríguez AM, Parra-Arroyo L, González-González RB, Parra-Saldívar R, Bilal M, Iqbal HM. Laccase-assisted biosensing constructs – Robust modalities to detect and remove environmental contaminants. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022. [DOI: 10.1016/j.cscee.2022.100180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Zhang CX, Wang Y, Duan X, Chen K, Li HW, Wu Y. Development of cytidine 5′-monophosphate-protected gold-nanoclusters to be a direct luminescent substrate via aggregation-induced emission enhancement for ratiometric determination of alkaline phosphatase and inhibitor evaluation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
42
|
Bhardwaj SK, Singh H, Khatri M, Kim KH, Bhardwaj N. Advances in MXenes-based optical biosensors: A review. Biosens Bioelectron 2022; 202:113995. [DOI: 10.1016/j.bios.2022.113995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
|
43
|
Head T, Cady NC. Monitoring and modulation of the tumor microenvironment for enhanced cancer modeling. Exp Biol Med (Maywood) 2022; 247:598-613. [PMID: 35088603 PMCID: PMC9014523 DOI: 10.1177/15353702221074293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer treatments utilizing biologic or cytotoxic drugs compose the frontline of therapy, and though gains in treatment efficacy have been persistent in recent decades, much work remains in understanding cancer progression and treatment. Compounding this situation is the low rate of success when translating preclinical drug candidates to the clinic, which raises costs and development timelines. This underperformance is due in part to the poor recapitulation of the tumor microenvironment, a critical component of cancer biology, in cancer model systems. New technologies capable of both accurately observing and manipulating the tumor microenvironment are needed to effectively model cancer response to treatment. In this review, conventional cancer models are summarized, and a primer on emerging techniques for monitoring and modulating the tumor microenvironment is presented and discussed.
Collapse
Affiliation(s)
- Tristen Head
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| | - Nathaniel C Cady
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
44
|
Biosensors for circulating tumor cells (CTCs)-biomarker detection in lung and prostate cancer: Trends and prospects. Biosens Bioelectron 2022; 197:113770. [PMID: 34768065 DOI: 10.1016/j.bios.2021.113770] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading cause of death worldwide. Lung cancer (LCa) and prostate cancer (PCa) are the two most common ones particularly among men with about 20% of aggressive metastatic form leading to shorter overall survival. In recent years, circulating tumor cells (CTCs) have been investigated extensively for their role in metastatic progression and their involvement in reduced overall survival and treatment responses. Analysis of these cells and their associated biomarkers as "liquid biopsy" can provide valuable real-time information regarding the disease state and can be a potential avenue for early-stage detection and possible selection of personalized treatments. This review focuses on the role of CTCs and their associated biomarkers in lung and prostate cancer, as well as the shortcomings of conventional methods for their isolation and analysis. To overcome these drawbacks, biosensors are an elegant alternative because they are capable of providing valuable multiplexed information in real-time and analyzing biomarkers at lower concentrations. A comparative analysis of different transducing elements specific for the analysis of cancer cell and cancer biomarkers have been compiled in this review.
Collapse
|
45
|
Idili A, Montón H, Medina-Sánchez M, Ibarlucea B, Cuniberti G, Schmidt OG, Plaxco KW, Parolo C. Continuous monitoring of molecular biomarkers in microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:295-333. [PMID: 35094779 DOI: 10.1016/bs.pmbts.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches. In this chapter we analyze recent advances in the biosensing field aiming at adapting these to the problem of continuous molecular monitoring in complex sample streams, and how the merging of these sensors with lab-on-a-chip technologies would be beneficial to both. To do so we discuss (1) the components that comprise a biosensor, (2) the challenges associated with continuous molecular monitoring in complex sample streams, (3) how different sensing strategies deal with (or fail to deal with) these challenges, and (4) the implementation of these technologies into lab-on-a-chip architectures.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Helena Montón
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | | | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany; Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz, Germany; School of Science, TU Dresden, Dresden, Germany
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Interdepartmental Program in Biomolecular Science and Engineering University of California, Santa Barbara, CA, United States
| | - Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
46
|
Su Z, Li T, Wu D, Wu Y, Li G. Recent Progress on Single-Molecule Detection Technologies for Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:458-469. [PMID: 34985271 DOI: 10.1021/acs.jafc.1c06808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and sensitive detection technologies for food contaminants play vital roles in food safety. Due to the complexity of the food matrix and the trace amount distribution, traditional methods often suffer from unsatisfying accuracy, sensitivity, or specificity. In past decades, single-molecule detection (SMD) has emerged as a way to realize the rapid and ultrasensitive measurement with low sample consumption, showing a great potential in food contaminants detection. For instance, based on the nanopore technique, simple and effective methods for single-molecule analysis of food contaminants have been developed. To our knowledge, there has been a rare review that focuses on SMD techniques for food safety. The present review attempts to cover some typical SMD methods in food safety, including electrochemistry, optical spectrum, and atom force microscopy. Then, recent applications of these techniques for detecting food contaminants such as biotoxins, pesticides, heavy metals, and illegal additives are reviewed. Finally, existing research challenges and future trends of SMD in food safety are also tentatively proposed.
Collapse
Affiliation(s)
- Zhuoqun Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tong Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
47
|
Chiodi E, Marn AM, Bakhshpour M, Lortlar Ünlü N, Ünlü MS. The Effects of Three-Dimensional Ligand Immobilization on Kinetic Measurements in Biosensors. Polymers (Basel) 2022; 14:polym14020241. [PMID: 35054650 PMCID: PMC8777619 DOI: 10.3390/polym14020241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
The field of biosensing is in constant evolution, propelled by the need for sensitive, reliable platforms that provide consistent results, especially in the drug development industry, where small molecule characterization is of uttermost relevance. Kinetic characterization of small biochemicals is particularly challenging, and has required sensor developers to find solutions to compensate for the lack of sensitivity of their instruments. In this regard, surface chemistry plays a crucial role. The ligands need to be efficiently immobilized on the sensor surface, and probe distribution, maintenance of their native structure and efficient diffusion of the analyte to the surface need to be optimized. In order to enhance the signal generated by low molecular weight targets, surface plasmon resonance sensors utilize a high density of probes on the surface by employing a thick dextran matrix, resulting in a three-dimensional, multilayer distribution of molecules. Despite increasing the binding signal, this method can generate artifacts, due to the diffusion dependence of surface binding, affecting the accuracy of measured affinity constants. On the other hand, when working with planar surface chemistries, an incredibly high sensitivity is required for low molecular weight analytes, and furthermore the standard method for immobilizing single layers of molecules based on self-assembled monolayers (SAM) of epoxysilane has been demonstrated to promote protein denaturation, thus being far from ideal. Here, we will give a concise overview of the impact of tridimensional immobilization of ligands on label-free biosensors, mostly focusing on the effect of diffusion on binding affinity constants measurements. We will comment on how multilayering of probes is certainly useful in terms of increasing the sensitivity of the sensor, but can cause steric hindrance, mass transport and other diffusion effects. On the other hand, probe monolayers on epoxysilane chemistries do not undergo diffusion effect but rather other artifacts can occur due to probe distortion. Finally, a combination of tridimensional polymeric chemistry and probe monolayer is presented and reviewed, showing advantages and disadvantages over the other two approaches.
Collapse
Affiliation(s)
- Elisa Chiodi
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.B.); (N.L.Ü.)
- Correspondence: (E.C.); (M.S.Ü.)
| | - Allison M. Marn
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.B.); (N.L.Ü.)
- School of Engineering, Computing, and Construction Management, Roger Williams University, Bristol, RI 02809, USA
| | - Monireh Bakhshpour
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.B.); (N.L.Ü.)
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Nese Lortlar Ünlü
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.B.); (N.L.Ü.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - M. Selim Ünlü
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.B.); (N.L.Ü.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Correspondence: (E.C.); (M.S.Ü.)
| |
Collapse
|
48
|
Almansour AI, Arumugam N, Prasad S, Kumar RS, Alsalhi MS, Alkaltham MF, Al-Tamimi HBA. Investigation of the Optical Properties of a Novel Class of Quinoline Derivatives and Their Random Laser Properties Using ZnO Nanoparticles. Molecules 2021; 27:145. [PMID: 35011374 PMCID: PMC8746827 DOI: 10.3390/molecules27010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
Quinoline Schiff bases display potential applications in optoelectronics and laser fields because of their unique optical properties that arise from extensive delocalization of the electron cloud, and a high order of non-linearity. In this context, a new class of conjugated quinoline-derivative viz. N-(quinolin-3-ylmethylene)anilines were synthesized from 2-hydroxyquinoline-3-carbaldehyde in two good yielding steps. The ability of these imines to accept an electron from a donor is denoted by their electron acceptor number and sites, which is calculated using density functional theory (DFT). The optical properties such as FT-IR, Raman, UV-VIS, and EDS spectra were calculated using TD-DFT, which also provided the energy gap, HOMO-LUMO structure. The optical properties of the synthesized imino quinolines were experimentally studied using photoluminescence and absorption spectroscopy. The properties such as Stokes shift and quantum yield were calculated using experimental data. Furthermore, the compound bearing a methyl group on the aryl ring and ZnO nanoparticles (hydrothermally synthesized) were dissolved in toluene, and optically excited with a 355 nm nanosecond laser, which produced a random laser.
Collapse
Affiliation(s)
- Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.I.A.); (R.S.K.); (M.F.A.)
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.I.A.); (R.S.K.); (M.F.A.)
| | - Saradh Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.P.); (M.S.A.); (H.b.A.A.-T.)
- Research Chair for Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.I.A.); (R.S.K.); (M.F.A.)
| | - Mohamad S. Alsalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.P.); (M.S.A.); (H.b.A.A.-T.)
- Research Chair for Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manal Fahad Alkaltham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.I.A.); (R.S.K.); (M.F.A.)
| | - Haya bint Abdulaziz Al-Tamimi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.P.); (M.S.A.); (H.b.A.A.-T.)
| |
Collapse
|
49
|
Sowa ST, Galera-Prat A, Wazir S, Alanen HI, Maksimainen MM, Lehtiö L. A molecular toolbox for ADP-ribosyl binding proteins. CELL REPORTS METHODS 2021; 1:100121. [PMID: 34786571 PMCID: PMC8580838 DOI: 10.1016/j.crmeth.2021.100121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Proteins interacting with ADP-ribosyl groups are often involved in disease-related pathways or viral infections, making them attractive drug targets. We present a robust and accessible assay applicable to both hydrolyzing or non-hydrolyzing binders of mono- and poly-ADP-ribosyl groups. This technology relies on a C-terminal tag based on a Gi protein alpha subunit peptide (GAP), which allows for site-specific introduction of cysteine-linked mono- and poly-ADP-ribosyl groups or analogs. By fusing the GAP-tag and ADP-ribosyl binders to fluorescent proteins, we generate robust FRET partners and confirm the interaction with 22 known ADP-ribosyl binders. The applicability for high-throughput screening of inhibitors is demonstrated with the SARS-CoV-2 nsp3 macrodomain, for which we identify suramin as a moderate-affinity yet non-specific inhibitor. High-affinity ADP-ribosyl binders fused to nanoluciferase complement this technology, enabling simple blot-based detection of ADP-ribosylated proteins. All these tools can be produced in Escherichia coli and will help in ADP-ribosylation research and drug discovery.
Collapse
Affiliation(s)
- Sven T. Sowa
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Albert Galera-Prat
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Sarah Wazir
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Heli I. Alanen
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Mirko M. Maksimainen
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Lari Lehtiö
- Faculty for Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
50
|
Kim J, Noh S, Park JA, Park SC, Park SJ, Lee JH, Ahn JH, Lee T. Recent Advances in Aptasensor for Cytokine Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:8491. [PMID: 34960590 PMCID: PMC8705356 DOI: 10.3390/s21248491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Cytokines are proteins secreted by immune cells. They promote cell signal transduction and are involved in cell replication, death, and recovery. Cytokines are immune modulators, but their excessive secretion causes uncontrolled inflammation that attacks normal cells. Considering the properties of cytokines, monitoring the secretion of cytokines in vivo is of great value for medical and biological research. In this review, we offer a report on recent studies for cytokine detection, especially studies on aptasensors using aptamers. Aptamers are single strand nucleic acids that form a stable three-dimensional structure and have been receiving attention due to various characteristics such as simple production methods, low molecular weight, and ease of modification while performing a physiological role similar to antibodies.
Collapse
Affiliation(s)
- Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Seong Jun Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea;
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Korea;
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| |
Collapse
|