1
|
Bhat A, Ambrose JW, Yeow RCH. Ultralow-Latency Textile Sensors for Wearable Interfaces with a Human-in-Loop Sensing Approach. Soft Robot 2023; 10:431-442. [PMID: 36318510 DOI: 10.1089/soro.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
The evolution of wearable technologies has led to the development of novel types of sensors customized for a wide range of applications. Wearable sensors need to possess a low form factor and be ergonomic, causing minimal impediment of the user's natural movement. Various principles have been explored to meet these requirements, ranging from optical, magnetic, resistive flex sensing to 3D printed sensors and liquid metals such as those using eutectic gallium-indium. However, manufacturing techniques for most current wearable sensors tend to be complex and difficult to scale. Challenges also exist in achieving high sensitivity with noise resistance and robustness to false detections, especially in capacitive sensors. In this research, a novel ultralow-latency soft tactile and pressure sensor developed using off-the-shelf e-textiles is proposed, which overcomes some of these limitations. The sensor does not use any specialized equipment or materials for manufacture. A human-in-loop (HIL) sensing technique is demonstrated, which provides high sensitivity, high sensing bandwidth, as well as ultralow latency, which makes it ideal as a wearable input device. In addition, the HIL method provides other advantages such as high noise rejection and resistance to accidental triggers that could be caused by other humans or environmental factors owing to its high signal to noise ratio. Finally, two applications-a wearable keyboard and gaming input device-were demonstrated using these sensors.
Collapse
Affiliation(s)
- Ajinkya Bhat
- Evolution Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School-Integrative Science and Engineering Program (ISEP), National University of Singapore, Singapore, Singapore
| | - Jonathan William Ambrose
- Evolution Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Raye Chen-Hua Yeow
- Evolution Innovation Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Słoma M. 3D printed electronics with nanomaterials. NANOSCALE 2023; 15:5623-5648. [PMID: 36880539 DOI: 10.1039/d2nr06771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
3
|
Chitrakar C, Hedrick E, Adegoke L, Ecker M. Flexible and Stretchable Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1664. [PMID: 35268893 PMCID: PMC8911085 DOI: 10.3390/ma15051664] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
Medical science technology has improved tremendously over the decades with the invention of robotic surgery, gene editing, immune therapy, etc. However, scientists are now recognizing the significance of 'biological circuits' i.e., bodily innate electrical systems for the healthy functioning of the body or for any disease conditions. Therefore, the current trend in the medical field is to understand the role of these biological circuits and exploit their advantages for therapeutic purposes. Bioelectronics, devised with these aims, work by resetting, stimulating, or blocking the electrical pathways. Bioelectronics are also used to monitor the biological cues to assess the homeostasis of the body. In a way, they bridge the gap between drug-based interventions and medical devices. With this in mind, scientists are now working towards developing flexible and stretchable miniaturized bioelectronics that can easily conform to the tissue topology, are non-toxic, elicit no immune reaction, and address the issues that drugs are unable to solve. Since the bioelectronic devices that come in contact with the body or body organs need to establish an unobstructed interface with the respective site, it is crucial that those bioelectronics are not only flexible but also stretchable for constant monitoring of the biological signals. Understanding the challenges of fabricating soft stretchable devices, we review several flexible and stretchable materials used as substrate, stretchable electrical conduits and encapsulation, design modifications for stretchability, fabrication techniques, methods of signal transmission and monitoring, and the power sources for these stretchable bioelectronics. Ultimately, these bioelectronic devices can be used for wide range of applications from skin bioelectronics and biosensing devices, to neural implants for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA; (C.C.); (E.H.); (L.A.)
| |
Collapse
|
4
|
Zeng X, Deng HT, Wen DL, Li YY, Xu L, Zhang XS. Wearable Multi-Functional Sensing Technology for Healthcare Smart Detection. MICROMACHINES 2022; 13:254. [PMID: 35208378 PMCID: PMC8874439 DOI: 10.3390/mi13020254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022]
Abstract
In recent years, considerable research efforts have been devoted to the development of wearable multi-functional sensing technology to fulfill the requirements of healthcare smart detection, and much progress has been achieved. Due to the appealing characteristics of flexibility, stretchability and long-term stability, the sensors have been used in a wide range of applications, such as respiration monitoring, pulse wave detection, gait pattern analysis, etc. Wearable sensors based on single mechanisms are usually capable of sensing only one physiological or motion signal. In order to measure, record and analyze comprehensive physical conditions, it is indispensable to explore the wearable sensors based on hybrid mechanisms and realize the integration of multiple smart functions. Herein, we have summarized various working mechanisms (resistive, capacitive, triboelectric, piezoelectric, thermo-electric, pyroelectric) and hybrid mechanisms that are incorporated into wearable sensors. More importantly, to make wearable sensors work persistently, it is meaningful to combine flexible power units and wearable sensors and form a self-powered system. This article also emphasizes the utility of self-powered wearable sensors from the perspective of mechanisms, and gives applications. Furthermore, we discuss the emerging materials and structures that are applied to achieve high sensitivity. In the end, we present perspectives on the outlooks of wearable multi-functional sensing technology.
Collapse
Affiliation(s)
- Xu Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (X.Z.); (H.-T.D.); (D.-L.W.); (Y.-Y.L.)
| | - Hai-Tao Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (X.Z.); (H.-T.D.); (D.-L.W.); (Y.-Y.L.)
| | - Dan-Liang Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (X.Z.); (H.-T.D.); (D.-L.W.); (Y.-Y.L.)
| | - Yao-Yao Li
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (X.Z.); (H.-T.D.); (D.-L.W.); (Y.-Y.L.)
| | - Li Xu
- Rehabilitation Department, Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Xiao-Sheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (X.Z.); (H.-T.D.); (D.-L.W.); (Y.-Y.L.)
| |
Collapse
|
5
|
Silicon Based Coplanar Capacitive Device for Liquid Sensor Applications. SENSORS 2021; 21:s21175958. [PMID: 34502849 PMCID: PMC8434668 DOI: 10.3390/s21175958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022]
Abstract
The development of silicon-based sensor devices has enabled the possibility to pursue novel integrated smart sensor technologies. Under this scenario, capacitive sensor devices are one viable option for implementing different kinds of applications. In this paper, an interdigitated coplanar capacitive device fabricated over a silicon substrate is presented and its potential use as liquid sensor is demonstrated. Additionally, a detailed capacitance model, which includes the parasitic capacitances introduced by the silicon substrate, was developed. The capacitance model has been theoretically validated through finite-element simulations as well as experimentally by comparison with fabricated devices. A polydimethylsiloxane mold has been fabricated and bonded to the sensor device with the aim of defining a cavity to collect the liquid sample into the device’s active region. The active capacitance component correlates to the electric field coupling between adjacent metal lines. Therefore, any change to the dielectric constant of the medium above the coplanar metal lines will produce a change to the device capacitance. Finally, the main guidelines for device performance improvement are depicted.
Collapse
|
6
|
Motovilova E, Tan ET, Taracila V, Vincent JM, Grafendorfer T, Shin J, Potter HG, Robb FJL, Sneag DB, Winkler SA. Stretchable self-tuning MRI receive coils based on liquid metal technology (LiquiTune). Sci Rep 2021; 11:16228. [PMID: 34376703 PMCID: PMC8355233 DOI: 10.1038/s41598-021-95335-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 01/14/2023] Open
Abstract
Magnetic resonance imaging systems rely on signal detection via radiofrequency coil arrays which, ideally, need to provide both bendability and form-fitting stretchability to conform to the imaging volume. However, most commercial coils are rigid and of fixed size with a substantial mean offset distance of the coil from the anatomy, which compromises the spatial resolution and diagnostic image quality as well as patient comfort. Here, we propose a soft and stretchable receive coil concept based on liquid metal and ultra-stretchable polymer that conforms closely to a desired anatomy. Moreover, its smart geometry provides a self-tuning mechanism to maintain a stable resonance frequency over a wide range of elongation levels. Theoretical analysis and numerical simulations were experimentally confirmed and demonstrated that the proposed coil withstood the unwanted frequency detuning typically observed with other stretchable coils (0.4% for the proposed coil as compared to 4% for a comparable control coil). Moreover, the signal-to-noise ratio of the proposed coil increased by more than 60% as compared to a typical, rigid, commercial coil.
Collapse
Affiliation(s)
- Elizaveta Motovilova
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medicine, New York, NY 10065 USA ,grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | - Ek Tsoon Tan
- grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | - Victor Taracila
- grid.418143.b0000 0001 0943 0267GE Healthcare, Aurora, OH USA
| | - Jana M. Vincent
- grid.418143.b0000 0001 0943 0267GE Healthcare, Aurora, OH USA
| | | | - James Shin
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medicine, New York, NY 10065 USA
| | - Hollis G. Potter
- grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | | | - Darryl B. Sneag
- grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | - Simone A. Winkler
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
7
|
Mechanical Behaviour of Large Strain Capacitive Sensor with Barium Titanate Ecoflex Composite Used to Detect Human Motion. ROBOTICS 2021. [DOI: 10.3390/robotics10020069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper, the effect of strain rate on the output signal of highly stretchable interdigitated capacitive (IDC) strain sensors is studied. IDC sensors fabricated with pristine Ecoflex and a composite based on 40 wt% of 200 nm barium titanate (BTO) dispersed in a silicone elastomer (Ecoflex 00-30TM) were subjected to 1000 stretch and relax cycles to study the effect of dynamic loading conditions on the output signal of the IDC sensor. It was observed that the strain rate has no effect on the output signal of IDC sensor. To study the non-linear elastic behaviour of pristine Ecoflex and composites based on 10, 20, 30, 40 wt% of 200 nm BTO filler dispersed in a silicone elastomer, we conducted uniaxial tensile testing to failure at strain rates of ~5, ~50, and ~500 mm/min. An Ogden second-order model was used to fit the uniaxial tensile test data to understand the non-linearity in the stress-strain responses of BTO-Ecoflex composite at different strain rates. The decrease in Ogden parameters (α1 and α2) indicates the decrease in non-linearity of the stress-strain response of the composite with an increase in filler loading. Scanning electronic microscopy analysis was performed on the cryo-fractured pristine Ecoflex and 10, 20, 30, and 40 wt% of BTO-Ecoflex composites, where it was found that 200 nm BTO is more uniformly distributed in Ecoflex at a higher filler loading levels (40 wt% 200 nm BTO). Therefore, an IDC sensor was fabricated based on a 40 wt% 200 nm BTO-Ecoflex composite and mounted on an elastic elbow sleeve with supporting electronics, and successfully functioned as a reliable and robust flexible sensor, demonstrating an application to measure the bending angle of an elbow at slow and fast movement of the arm. A linear relationship with respect to the elbow bending angle was observed between the IDC sensor output signal under a 50% strain and the deflection of the elbow of hand indicating its potential as a stretchable, flexible, and wearable sensor.
Collapse
|
8
|
Lee M, Lee S, Lim S. Electromagnetic Control by Actuating Kirigami-Inspired Shape Memory Alloy: Thermally Reconfigurable Antenna application. SENSORS (BASEL, SWITZERLAND) 2021; 21:3026. [PMID: 33925833 PMCID: PMC8123417 DOI: 10.3390/s21093026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
Electromagnetic responses are generally controlled electrically or optically. However, although electrical and optical control allows fast response, they suffer from switching or tuning range limitations. This paper controls electromagnetic response by mechanical transformation. We introduce a novel kirigami-inspired structure for mechanical transformation with less strength, integrating a shape memory alloy actuator into the kirigami-inspired for mechanical transformation and hence electromagnetic control. The proposed approach was implemented for a reconfigurable antenna designed based on structural and electromagnetic analyses. The mechanical transformation was analyzed with thermal stimulus to predict the antenna geometry and electromagnetic analysis with different geometries predicted antenna performance. We numerically and experimentally verified that resonance response was thermally controlled using the kirigami-inspired antenna integrated with a shape memory alloy actuator.
Collapse
Affiliation(s)
| | | | - Sungjoon Lim
- School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea; (M.L.); (S.L.)
| |
Collapse
|
9
|
Liu H, Zhang H, Han W, Lin H, Li R, Zhu J, Huang W. 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004782. [PMID: 33448066 DOI: 10.1002/adma.202004782] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/23/2020] [Indexed: 06/12/2023]
Abstract
The revolutionary and pioneering advancements of flexible electronics provide the boundless potential to become one of the leading trends in the exploitation of wearable devices and electronic skin. Working as substantial intermediates for the collection of external mechanical signals, flexible strain sensors that get intensive attention are regarded as indispensable components in flexible integrated electronic systems. Compared with conventional preparation methods including complicated lithography and transfer printing, 3D printing technology is utilized to manufacture various flexible strain sensors owing to the low processing cost, superior fabrication accuracy, and satisfactory production efficiency. Herein, up-to-date flexible strain sensors fabricated via 3D printing are highlighted, focusing on different printing methods based on photocuring and materials extrusion, including Digital Light Processing (DLP), fused deposition modeling (FDM), and direct ink writing (DIW). Sensing mechanisms of 3D printed strain sensors are also discussed. Furthermore, the existing bottlenecks and future prospects are provided for further progressing research.
Collapse
Affiliation(s)
- Haodong Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Hongjian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wenqi Han
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Huijuan Lin
- Institute of Advanced Materials (IAM), Key Laboratory of Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruizi Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Jixin Zhu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Institute of Advanced Materials (IAM), Key Laboratory of Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Institute of Advanced Materials (IAM), Key Laboratory of Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
10
|
Hesam Mahmoudinezhad M, Anderson I, Rosset S. Interdigitated Sensor Based on a Silicone Foam for Subtle Robotic Manipulation. Macromol Rapid Commun 2020; 42:e2000560. [PMID: 33274814 DOI: 10.1002/marc.202000560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/12/2020] [Indexed: 11/07/2022]
Abstract
In this contribution, a soft sensor configuration based on silicone foam is developed to measure compressive forces in the range of 50 N with the aim of providing proprioceptive capabilities to conventional robotic manipulators based on hard materials. This then makes them capable of interacting with soft and fragile objects without damage. The concept relies on interdigitated electrodes that are patterned on the backside of the sensor to generate a fringing electric field into a soft compressible polymeric foam. The deformation of the foam causes changes to relative permittivity as the air-filled cells compress. The model in this article shows how the different parameters of the foam, such as air volume fraction, permittivity, and Young's modulus, affect the stiffness and electrical sensitivity of the sensor, and how controlling the porosity of the foam is key to optimizing the sensitivity of the sensor. This sensor is easy to fabricate and does not require compliant electrodes, while exhibiting high sensitivity values of 33% capacitance change for as little as 10 N applied force.
Collapse
Affiliation(s)
| | - Iain Anderson
- Biomimetics Laboratory, Auckland Bioengineering Institute, Auckland, 1010, New Zealand
| | - Samuel Rosset
- Biomimetics Laboratory, Auckland Bioengineering Institute, Auckland, 1010, New Zealand
| |
Collapse
|
11
|
Cholleti ER, Stringer J, Kelly P, Bowen C, Aw K. The effect of barium titanate ceramic loading on the stress relaxation behavior of barium titanate‐silicone elastomer composites. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Jonathan Stringer
- Department of Mechanical Engineering University of Auckland Auckland New Zealand
| | - Piaras Kelly
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - Chris Bowen
- Department of Mechanical Engineering University of Bath Bath UK
| | - Kean Aw
- Department of Mechanical Engineering University of Auckland Auckland New Zealand
| |
Collapse
|
12
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
13
|
Lim HR, Kim YS, Kwon S, Mahmood M, Kwon YT, Lee Y, Lee SM, Yeo WH. Wireless, Flexible, Ion-Selective Electrode System for Selective and Repeatable Detection of Sodium. SENSORS 2020; 20:s20113297. [PMID: 32531954 PMCID: PMC7309126 DOI: 10.3390/s20113297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Wireless, flexible, ion-selective electrodes (ISEs) are of great interest in the development of wearable health monitors and clinical systems. Existing film-based electrochemical sensors, however, still have practical limitations due to poor electrical contact and material–interfacial leakage. Here, we introduce a wireless, flexible film-based system with a highly selective, stable, and reliable sodium sensor. A flexible and hydrophobic composite with carbon black and soft elastomer serves as an ion-to-electron transducer offering cost efficiency, design simplicity, and long-term stability. The sensor package demonstrates repeatable analysis of selective sodium detection in saliva with good sensitivity (56.1 mV/decade), stability (0.53 mV/h), and selectivity coefficient of sodium against potassium (−3.0). The film ISEs have an additional membrane coating that provides reinforced stability for the sensor upon mechanical bending. Collectively, the comprehensive study of materials, surface chemistry, and sensor design in this work shows the potential of the wireless flexible sensor system for low-profile wearable applications.
Collapse
Affiliation(s)
- Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Yun-Soung Kim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Shinjae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Musa Mahmood
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Yongkuk Lee
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA;
| | - Soon Min Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Neural Engineering Center, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: ; Tel.: +1-404-385-5710; Fax: +1-404-894-1658
| |
Collapse
|
14
|
Lane S, Barrett-Snyder K, Lazarus N, Alberts WCK, Hanrahan B. Vibration sensing the mammalian way: an artificial Pacinian corpuscle. BIOINSPIRATION & BIOMIMETICS 2020; 15:046001. [PMID: 32106099 DOI: 10.1088/1748-3190/ab7ab6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A vibration sensor is presented mimicking the structure of the Pacinian corpuscle. A multi-step casting process is used to create a 5 mm diameter sensor with a liquid metal core, elastomer dielectric, and graphite counter electrode creating a spherical capacitive sensing element with sensitivities on the order of 10 Δ pF/mm-1. A model for the capacitance change of the spherical capacitor as it is formed is developed and its findings support the sensitivities observed. Various elastomer dielectric compositions with integrated barium titanate nanoparticles are tested to increase the dielectric constant. The biological acoustic filter within the corpuscle is mimicked using alternating cast layers of oligomers and elastomers around the spherical sensor element. Vibration sensing is characterized over the low frequency range of 10-300 Hz and the minimum detectable sensitivity is found to be 1 µm with a low power requirement of 7 mW. The artificial Pacinian corpuscle has potential applications in tactile sensing and seismic monitoring devices.
Collapse
Affiliation(s)
- Susan Lane
- U S Army Research Laboratory, Adelphi, MD, United States of America
| | | | | | | | | |
Collapse
|
15
|
Visual Feedback Control of a Rat Ankle Angle Using a Wirelessly Powered Two-Channel Neurostimulator. SENSORS 2020; 20:s20082210. [PMID: 32295158 PMCID: PMC7218912 DOI: 10.3390/s20082210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 02/01/2023]
Abstract
Peripheral nerve disconnections cause severe muscle atrophy and consequently, paralysis of limbs. Reinnervation of denervated muscle by transplanting motor neurons and applying Functional Electrical Stimulation (FES) onto peripheral nerves is an important procedure for preventing irreversible degeneration of muscle tissues. After the reinnervation of denervated muscles, multiple peripheral nerves should be stimulated independently to control joint motion and reconstruct functional movements of limbs by the FES. In this study, a wirelessly powered two-channel neurostimulator was developed with the purpose of applying selective FES to two peripheral nerves—the peroneal nerve and the tibial nerve in a rat. The neurostimulator was designed in such a way that power could be supplied wirelessly, from a transmitter coil to a receiver coil. The receiver coil was connected, in turn, to the peroneal and tibial nerves in the rat. The receiver circuit had a low pass filter to allow detection of the frequency of the transmitter signal. The stimulation of the nerves was switched according to the frequency of the transmitter signal. Dorsal/plantar flexion of the rat ankle joint was selectively induced by the developed neurostimulator. The rat ankle joint angle was controlled by changing the stimulation electrode and the stimulation current, based on the Proportional Integral (PI) control method using a visual feedback control system. This study was aimed at controlling the leg motion by stimulating the peripheral nerves using the neurostimulator.
Collapse
|
16
|
Rivadeneyra A, López-Villanueva JA. Recent Advances in Printed Capacitive Sensors. MICROMACHINES 2020; 11:E367. [PMID: 32244571 PMCID: PMC7230616 DOI: 10.3390/mi11040367] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
In this review paper, we summarize the latest advances in the field of capacitive sensors fabricated by printing techniques. We first explain the main technologies used in printed electronics, pointing out their features and uses, and discuss their advantages and drawbacks. Then, we review the main types of capacitive sensors manufactured with different materials and techniques from physical to chemical detection, detailing the main substrates and additives utilized, as well as the measured ranges. The paper concludes with a short notice on status and perspectives in the field.
Collapse
|
17
|
Choi J, Kwon D, Kim K, Park J, Orbe DD, Gu J, Ahn J, Cho I, Jeong Y, Oh Y, Park I. Synergetic Effect of Porous Elastomer and Percolation of Carbon Nanotube Filler toward High Performance Capacitive Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1698-1706. [PMID: 31825585 DOI: 10.1021/acsami.9b20097] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Wearable pressure sensors have been attracting great attention for a variety of practical applications, including electronic skin, smart textiles, and healthcare devices. However, it is still challenging to realize wearable pressure sensors with sufficient sensitivity and low hysteresis under small mechanical stimuli. Herein, we introduce simple, cost-effective, and sensitive capacitive pressure sensor based on porous Ecoflex-multiwalled carbon nanotube composite (PEMC) structures, which leads to enhancing the sensitivity (6.42 and 1.72 kPa-1 in a range of 0-2 and 2-10 kPa, respectively) due to a synergetic effect of the porous elastomer and percolation of carbon nanotube fillers. The PEMC structure shows excellent mechanical deformability and compliance for an effective integration with practical wearable devices. Also, the PEMC-based pressure sensor shows not only the long-term stability, low-hysteresis, and fast response under dynamic loading but also the high robustness against temperature and humidity changes. Finally, we demonstrate a prosthetic robot finger integrated with a PEMC-based pressure sensor and an actuator as well as a healthcare wristband capable of continuously monitoring blood pressure and heart rate.
Collapse
Affiliation(s)
- Jungrak Choi
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 305-701 , South Korea
| | - Donguk Kwon
- Package Process Development Team , Samsung Electronics , Seoul , South Korea
| | - Kyuyoung Kim
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 305-701 , South Korea
| | - Jaeho Park
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 305-701 , South Korea
| | - Dionisio Del Orbe
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 305-701 , South Korea
| | - Jimin Gu
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 305-701 , South Korea
| | - Junseong Ahn
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 305-701 , South Korea
| | - Incheol Cho
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 305-701 , South Korea
| | - Yongrok Jeong
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 305-701 , South Korea
| | - Yongsuk Oh
- Center for Bio-Integrated Electronics (CBIE) , Northwestern University , Evanston , Illinois 60208 , United States
| | - Inkyu Park
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 305-701 , South Korea
| |
Collapse
|
18
|
Senthil Kumar K, Chen PY, Ren H. A Review of Printable Flexible and Stretchable Tactile Sensors. RESEARCH (WASHINGTON, D.C.) 2019; 2019:3018568. [PMID: 31912031 PMCID: PMC6944518 DOI: 10.34133/2019/3018568] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
Abstract
Flexible and stretchable tactile sensors that are printable, nonplanar, and dynamically morphing are emerging to enable proprioceptive interactions with the unstructured surrounding environment. Owing to its varied range of applications in the field of wearable electronics, soft robotics, human-machine interaction, and biomedical devices, it is required of these sensors to be flexible and stretchable conforming to the arbitrary surfaces of their stiff counterparts. The challenges in maintaining the fundamental features of these sensors, such as flexibility, sensitivity, repeatability, linearity, and durability, are tackled by the progress in the fabrication techniques and customization of the material properties. This review is aimed at summarizing the recent progress of rapid prototyping of sensors, printable material preparation, required printing properties, flexible and stretchable mechanisms, and promising applications and highlights challenges and opportunities in this research paradigm.
Collapse
Affiliation(s)
- Kirthika Senthil Kumar
- Department of Biomedical Engineering, Medical Mechatronics Laboratory, National University of Singapore, Singapore 117583
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585
| | - Hongliang Ren
- Department of Biomedical Engineering, Medical Mechatronics Laboratory, National University of Singapore, Singapore 117583
| |
Collapse
|