1
|
Houari F, El Barghouti M, Mir A, Akjouj A. Nanosensors Based on Bimetallic Plasmonic Layer and Black Phosphorus: Application to Urine Glucose Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5058. [PMID: 39124105 PMCID: PMC11315007 DOI: 10.3390/s24155058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
This paper presents a new biosensor design based on the Kretschmann configuration, for the detection of analytes at different refractive indices. Our studied design consists of a TiO2/SiO2 bi-layer sandwiched between a BK7 prism and a bimetallic layer of Ag/Au plasmonic materials, covered by a layer of black phosphorus placed below the analyte-containing detection medium. The different layers of our structure and analyte detection were optimized using the angular interrogation method. High performance was achieved, with a sensitivity of 240 deg/RIU and a quality factor of 34.7 RIU-1. This biosensor can detect analytes with a wide refractive index range between 1.330 and 1.347, such as glucose detection in urine samples using a refractive index variation of 10-3. This capability offers a wide range of applications for biomedical and biochemical detection and selectivity.
Collapse
Affiliation(s)
- Fatima Houari
- Laboratory of Advanced Materials Studies and Applications (LEM2A), Physics Department, Faculty of Science, Moulay Ismail University of Meknes, B.P. 11201 Zitoune Meknès, Morocco; (F.H.); or (M.E.B.); (A.M.)
| | - Mohamed El Barghouti
- Laboratory of Advanced Materials Studies and Applications (LEM2A), Physics Department, Faculty of Science, Moulay Ismail University of Meknes, B.P. 11201 Zitoune Meknès, Morocco; (F.H.); or (M.E.B.); (A.M.)
- Faculty of Medicine and Pharmacy of Beni Mellal, Sultane Moulay Slimane University, M’ghila Campus, 23030 Beni Mellal, Morocco
| | - Abdellah Mir
- Laboratory of Advanced Materials Studies and Applications (LEM2A), Physics Department, Faculty of Science, Moulay Ismail University of Meknes, B.P. 11201 Zitoune Meknès, Morocco; (F.H.); or (M.E.B.); (A.M.)
| | - Abdellatif Akjouj
- Univ. Lille, Institute of Electronics, Microelectronics and Nanotechnology, UMR CNRS 8520, FST, Department of Physics, 59655 Villeneuve d’Ascq, France
| |
Collapse
|
2
|
Nourizad A, Golmohammadi S, Tohidkia MR, Aghanejad A. Numerical and analytical analysis of an ultrahigh sensitive surface plasmon resonance sensor based on a black phosphorene/graphene heterostructure. APPLIED OPTICS 2023; 62:6542-6552. [PMID: 37706784 DOI: 10.1364/ao.489116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/09/2023] [Indexed: 09/15/2023]
Abstract
In this study, a surface plasmon resonance biosensor using angular interrogation based on a black phosphorene (BP) and graphene (G) heterostructure as two-dimensional materials are designed to enhance the sensitivity of conventional biosensors. The proposed structure is composed of eight layers: FK51A coupling prism, silver (Ag) thin film as the plasmonic metal, gold (Au) nanolayer in a protective role, BP nanosheets as an evanescent field enhancer, G monolayer as an immobilization process facilitator, DNA aptamer as biorecognition element, and phosphate buffered saline as a running buffer and sensing medium. To evaluate the performance of the proposed biosensor, analytical parameters such as minimum reflectivity (R m i n ), sensitivity, as well as the full width at half-maximum (FWHM), detection accuracy (DA), and quality factor (QF) are systematically assessed by the use of the transfer matrix method analytically and the finite-difference time-domain method numerically, to validate each other. It is observed that the structure has been optimized with 1.49 (RIU) for the coupling prism and the heterostructure T i O 2/A g/A u/B P/G thicknesses of 65/35/1/3.18/0.34 nm, respectively. It was revealed that the proposed biosensor offered the sensitivity of 356 (°/RIU), QF of 42.4 (R I U -1), R m i n of 0.07 (a.u), FWHM of 8.3 (degree), and DA of 0.22 (unitless) and outperformed those of other results published up to now from the sensitivity point of view.
Collapse
|
3
|
Sebek M, Thanh NTK, Su X, Teng J. A Genetic Algorithm for Universal Optimization of Ultrasensitive Surface Plasmon Resonance Sensors with 2D Materials. ACS OMEGA 2023; 8:20792-20800. [PMID: 37323412 PMCID: PMC10268016 DOI: 10.1021/acsomega.3c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
We present a general optimization technique for surface plasmon resonance, (SPR) yielding a range of ultrasensitive SPR sensors from a materials database with an enhancement of ∼100%. Applying the algorithm, we propose and demonstrate a novel dual-mode SPR structure coupling SPP and a waveguide mode within GeO2 featuring an anticrossing behavior and an unprecedented sensitivity of 1364 deg/RIU. An SPR sensor operating at wavelengths of 633 nm having a bimetal Al/Ag structure sandwiched between hBN can achieve a sensitivity of 578 deg/RIU. For a wavelength of 785 nm, we optimized a sensor as a Ag layer sandwiched between hBN/MoS2/hBN heterostructures achieving a sensitivity of 676 deg/RIU. Our work provides a guideline and general technique for the design and optimization of high sensitivity SPR sensors for various sensing applications in the future.
Collapse
Affiliation(s)
- Matej Sebek
- UCL
Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
- Institute
of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore 138634 Singapore
- Biophysics
Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Nguyen Thi Kim Thanh
- UCL
Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
- Biophysics
Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Xiaodi Su
- Institute
of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore 138634 Singapore
| | - Jinghua Teng
- Institute
of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore 138634 Singapore
| |
Collapse
|
4
|
Akib TBA, Mostufa S, Rana MM, Hossain MB, Islam MR. A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2. OPTICAL AND QUANTUM ELECTRONICS 2023; 55:448. [PMID: 37008732 PMCID: PMC10039361 DOI: 10.1007/s11082-023-04700-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/18/2023] [Indexed: 06/19/2023]
Abstract
This paper presents a performance comparison of heterostructure surface plasmon resonance (SPR) biosensors for the application of Novel Coronavirus SARS-CoV-2 diagnosis. The comparison is performed and compared with the existing literature based on the performance parameters in terms of several prisms such as BaF2, BK7, CaF2, CsF, SF6, and SiO2, several adhesion layers such as TiO2, Chromium, plasmonic metals such as Ag, Au, and two-dimensional (2D) transition metal dichalcogenides materials such as BP, Graphene, PtSe2 MoS2, MoSe2, WS2, WSe2. To study the performance of the heterostructure SPR sensor, the transfer matrix method is applied, and to analyses, the electric field intensity near the graphene-sensing layer contact, the finite-difference time-domain approach is utilized. Numerical results show that the heterostructure comprised of CaF2/TiO2/Ag/BP/Graphene/Sensing-layer has the best sensitivity and detection accuracy. The proposed sensor has an angle shift sensitivity of 390°/refractive index unit (RIU). Furthermore, the sensor achieved a detection accuracy of 0.464, a quality factor of 92.86/RIU, a figure of merit of 87.95, and a combined sensitive factor of 85.28. Furthermore, varied concentrations (0-1000 nM) of biomolecule binding interactions between ligands and analytes have been observed for the prospects of diagnosis of the SARS-CoV-2 virus. Results demonstrate that the proposed sensor is well suited for real-time and label-free detection particularly SARS-CoV-2 virus detection.
Collapse
Affiliation(s)
- Tarik Bin Abdul Akib
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
- Department of Electrical and Electronic Engineering, Bangladesh Army University of Engineering and Technology, Rajshahi, 6431 Bangladesh
| | - Shahriar Mostufa
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
| | - Md. Masud Rana
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
| | - Md. Biplob Hossain
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
- Department of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Rabiul Islam
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| |
Collapse
|
5
|
Sensitivity Improvement of Surface Plasmon Resonance Biosensors with GeS-Metal Layers. ELECTRONICS 2022. [DOI: 10.3390/electronics11030332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Surface plasmon resonance (SPR) biosensors, with germanium sulfide (GeS) as a sensitive medium and Al/Ag/Au as the metal layers, are reported as we aim to improve the sensitivities of the biosensors. The sensitivities in conventional SPR biosensors, consisting of only metal Al, Ag, and Au layers, are 111°/RIU, 117°/RIU, 139°/RIU, respectively. Additionally, these sensitivities of the SPR biosensors based on the GeS-Al, GeS-Ag, and GeS-Au layers have an obvious improvement, resultant of 320°/RIU, 295°/RIU, and 260°/RIU, respectively. We also discuss the changing sensing medium GeS thickness using layer number to describe the scenario which brought about the diversification on the figure of merit (FOM) and optical absorption (OA) performance of the biosensors. These biosensors show obvious improvement of sensitivity and have strong SPR excitation to analytes; we believe that these kind biosensors could find potential applications in biological detection, chemical examination, and medical diagnosis.
Collapse
|
6
|
Sathya N, Karki B, Rane KP, Jha A, Pal A. Tuning and Sensitivity Improvement of Bi-Metallic Structure-Based Surface Plasmon Resonance Biosensor with 2-D ε -Tin Selenide Nanosheets. PLASMONICS (NORWELL, MASS.) 2022; 17:1001-1008. [PMID: 35069047 PMCID: PMC8763424 DOI: 10.1007/s11468-021-01565-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/18/2021] [Indexed: 05/09/2023]
Abstract
This manuscript aims to analyze the effect of tin selenide (SnSe) on the sensing application of SPR biosensors. Tin selenide is the 2-dimensional transition metal dichalcogenide material. The proposed multilayer structure has a BK7 prism, a bimetallic layer of Au, tin selenide, and a graphene layer. Tin selenide is used to improve the performance parameters of the biosensor. The ε - SnSe nanosheet is placed in between two layers of gold (Au) in the Kretschmann configuration. The proposed configuration has a maximum sensitivity of 214 deg/RIU, 93.81% higher than the conventional sensor. The performance parameters like full width half maximum, detection accuracy, and quality factor have been analyzed. The ε - SnSe material is an air-stable 2-D. The proposed sensor is suitable for the analysis of chemical, medical, and biological analytes.
Collapse
Affiliation(s)
- Natarajan Sathya
- Engineering Department, Scientific Society Group, Tamilnadu, India
| | - Bhishma Karki
- Department of Physics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, 44600 Nepal
| | | | - Ankit Jha
- Department of EECE, DIT University, Dehradun, Uttrakhand 248009 India
| | - Amrindra Pal
- Department of EECE, DIT University, Dehradun, Uttrakhand 248009 India
| |
Collapse
|
7
|
Rikta K, Anower M, Rahman MS, Rahman MM. SPR biosensor using SnSe-phosphorene heterostructure. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
8
|
Sensitivity Analysis of Single- and Bimetallic Surface Plasmon Resonance Biosensors. SENSORS 2021; 21:s21134348. [PMID: 34202104 PMCID: PMC8271734 DOI: 10.3390/s21134348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Comparative analysis of the sensitivity of two surface plasmon resonance (SPR) biosensors was conducted on a single-metallic Au sensor and bimetallic Ag–Au sensor, using a cathepsin S sensor as an example. Numerically modeled resonance curves of Au and Ag–Au layers, with parameters verified by the results of experimental reflectance measurement of real-life systems, were used for the analysis of these sensors. Mutual relationships were determined between ∂Y/∂n components of sensitivity of the Y signal in the SPR measurement to change the refractive index n of the near-surface sensing layer and ∂n/∂c sensitivity of refractive index n to change the analyte’s concentration, c, for both types of sensors. Obtained results were related to experimentally determined calibration curves of both sensors. A characteristic feature arising from the comparison of calibration curves is the similar level of Au and Ag–Au biosensors’ sensitivity in the linear range, where the signal of the AgAu sensor is at a level several times greater. It was shown that the influence of sensing surface morphology on the ∂n/∂c sensitivity component had to be incorporated to explain the features of calibration curves of sensors. The shape of the sensory surface relief was proposed to increase the sensor sensitivity at low analyte concentrations.
Collapse
|
9
|
Uddin SMA, Chowdhury SS, Kabir E. Numerical Analysis of a Highly Sensitive Surface Plasmon Resonance Sensor for SARS-CoV-2 Detection. PLASMONICS (NORWELL, MASS.) 2021; 16:2025-2037. [PMID: 34054377 PMCID: PMC8144697 DOI: 10.1007/s11468-021-01455-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/03/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we propose a surface plasmon resonance (SPR) structure based on Kretschmann configuration incorporating layers of silicon and BaTiO3 on top of Ag for real-time detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using thiol-tethered DNA as a ligand. Extensive numerical analysis based on transfer matrix theory as well as finite-difference time-domain (FDTD) technique has been performed to characterize the sensor response considering sensitivity, full width at half maxima, and minimum reflection. About 7.6 times enhanced sensitivity has been obtained using the proposed architecture for SARS-CoV-2 detection, compared to the basic Kretschmann configuration. Notably, the structure provides consistent enhancement over other competitive SPR structures for both angular and wavelength interrogations with a figure-of-merit of 692.28. Additionally, we repeated simulations for various ligate-ligand pairs to assess the range of applicability and robust performance improvement has been observed. As a result, the proposed sensor design provides a suitable configuration for highly sensitive, rapid, noninvasive biosensing which can be useful if adopted in experimental sensing protocols.
Collapse
Affiliation(s)
| | | | - Ehsan Kabir
- Department of EEE, Bangladesh University of Engineering and Technology, Dhaka, 1205 Bangladesh
| |
Collapse
|
10
|
Shi X, Tao X, Zou J, Chen Z. High-Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902923. [PMID: 32274303 PMCID: PMC7141048 DOI: 10.1002/advs.201902923] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Indexed: 05/18/2023]
Abstract
Tin selenide (SnSe) is one of the most promising candidates to realize environmentally friendly, cost-effective, and high-performance thermoelectrics, derived from its outstanding electrical transport properties by appropriate bandgaps and intrinsic low lattice thermal conductivity from its anharmonic layered structure. Advanced aqueous synthesis possesses various unique advantages including convenient morphology control, exceptional high doping solubility, and distinctive vacancy engineering. Considering that there is an urgent demand for a comprehensive survey on the aqueous synthesis technique applied to thermoelectric SnSe, herein, a thorough overview of aqueous synthesis, characterization, and thermoelectric performance in SnSe is provided. New insights into the aqueous synthesis-based strategies for improving the performance are provided, including vacancy synergy, crystallization design, solubility breakthrough, and local lattice imperfection engineering, and an attempt to build the inherent links between the aqueous synthesis-induced structural characteristics and the excellent thermoelectric performance is presented. Furthermore, the significant advantages and potentials of an aqueous synthesis route for fabricating SnSe-based 2D thermoelectric generators, including nanorods, nanobelts, and nanosheets, are also discussed. Finally, the controversy, strategy, and outlook toward future enhancement of SnSe-based thermoelectric materials are also provided. This Review guides the design of thermoelectric SnSe with high performance and provides new perspectives as a reference for other thermoelectric systems.
Collapse
Affiliation(s)
- Xiao‐Lei Shi
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield CentralBrisbaneQueensland4300Australia
| | - Xinyong Tao
- College of Materials Science and EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Jin Zou
- School of Mechanical and Mining EngineeringThe University of QueenslandBrisbaneQueensland4072Australia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhi‐Gang Chen
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield CentralBrisbaneQueensland4300Australia
| |
Collapse
|
11
|
Jia Y, Li Z, Wang H, Saeed M, Cai H. Sensitivity Enhancement of a Surface Plasmon Resonance Sensor with Platinum Diselenide. SENSORS (BASEL, SWITZERLAND) 2019; 20:E131. [PMID: 31878225 PMCID: PMC6982880 DOI: 10.3390/s20010131] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
The extraordinary optoelectronic properties of platinum diselenide (PtSe2), whose structure is similar to graphene and phosphorene, has attracted great attention in new rapidly developed two-dimensional (2D) materials beyond the other 2D material family members. We have investigated the surface plasmon resonance (SPR) sensors through PtSe2 with the transfer matrix method. The simulation results show that the anticipated PtSe2 biochemical sensors have the ability to detect analytic. It is evident that only the sensitivities of Ag or Au film biochemical sensors were observed at 118°/RIU (refractive index unit) and 130°/RIU, whereas the sensitivities of the PtSe2-based biochemical sensors reached as high as 162°/RIU (Ag film) and 165°/RIU (Au film). The diverse biosensor sensitivities with PtSe2 suggest that this kind of 2D material can adapt SPR sensor properties.
Collapse
Affiliation(s)
- Yue Jia
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| | - Zhongfu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| | - Haiqi Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| | - Muhammad Saeed
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Houzhi Cai
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| |
Collapse
|