1
|
Isayama YH, Hernández-Figueroa HE. Design of a novel hybrid multimode interferometer operating with both TE and TM polarizations for sensing applications. OPTICAL AND QUANTUM ELECTRONICS 2023; 55:454. [PMID: 37035461 PMCID: PMC10064966 DOI: 10.1007/s11082-023-04751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
A novel hybrid multimode interferometer for sensing applications operating with both TE and TM polarizations simultaneously is proposed and numerically demonstrated. The simulations were performed assuming an operating wavelength of 633 nm with the goal of future use as a biosensor, but its applications extend beyond that area and could be adapted for any wavelength or application of interest. By designing the mutimode waveguide core with a low aspect ratio, the confinement characteristics of TE modes and TM modes become very distinct and their interaction with the sample in the sensing area becomes very different as well, resulting in high device sensitivity. In addition, an excitation structure is presented, that allows good control over power distribution between the desired modes while also restricting the power coupled to other undesired modes. This new hybrid TE/TM approach produced a bulk sensitivity per sensor length of 1.798 rad · RIU - 1 · μ m - 1 and a bulk sensitivity per sensor area of 2.140 rad · RIU - 1 · μ m - 2 , which represents a much smaller footprint when compared to other MMI sensors, contributing to a higher level of integration, while also opening possibilities for a new range of MMI devices.
Collapse
Affiliation(s)
- Yuri H. Isayama
- Center for Semiconductor Components and Nanotechnology, University of Campinas, Campinas, Sao Paulo, 13083-870 Brazil
| | - Hugo E. Hernández-Figueroa
- School of Electrical and Computer Engineering, Univeristy of Campinas, Campinas, Sao Paulo, 13083-852 Brazil
| |
Collapse
|
2
|
Ozcan C, Aitchison JS, Mojahedi M. Optimization of bulk sensitivity for strip, slot, and subwavelength grating-based waveguides for dual-polarization operation. OPTICS EXPRESS 2023; 31:3579-3594. [PMID: 36785347 DOI: 10.1364/oe.478716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
We propose a dual-polarization optimization method for the bulk sensitivity of silicon-on-insulator (SOI) waveguides by defining a multi-objective function that accounts for the substrate leakage losses. The proposed optimization method was used to design micro-ring resonator bulk sensors with strip, slot, subwavelength grating, and subwavelength grating slot waveguides. The subwavelength grating slot waveguide has a bulk sensitivity of 520 nm/RIU and 325 nm/RIU for the TE and TM modes, respectively, both of which are higher than the bulk sensitivities of strip, slot, and subwavelength grating waveguides. Moreover, our Monte Carlo analysis shows that the subwavelength grating slot waveguide has the highest immunity to fabrication errors.
Collapse
|
3
|
Electro-Optical Biosensor Based on Embedded Double-Monolayer of Graphene Capacitor in Polymer Technology. Polymers (Basel) 2021; 13:polym13203564. [PMID: 34685322 PMCID: PMC8537356 DOI: 10.3390/polym13203564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
In this work, we present an interferometric polymer-based electro-optical device, integrated with an embedded double-monolayer graphene capacitor for biosensing applications. An external voltage across the capacitor applies an electric field to the graphene layers modifying their surface charge density and the Fermi level position in these layers. This in turn changes the electro-optic properties of the graphene layers making absorption in the waveguide tunable with external voltages. Simultaneously, it is possible to appreciate that this phenomenon contributes to the maximization of the light-graphene interaction by evanescent wave in the sensing area. As a result, it is obtained large phase changes at the output of the interferometer, as a function of small variations in the refractive index in the cladding area, which significantly increasing the sensitivity of the device. The optimum interaction length obtained was 1.24 cm considering a cladding refractive index of 1.33. An absorption change of 129 dB/mm was demonstrated. This result combined with the photonic device based on polymer technology may enable a low-cost solution for biosensing applications in Point of Care (PoC) platform.
Collapse
|
4
|
Isayama YH, Hernández-Figueroa HE. High-Order Multimode Waveguide Interferometer for Optical Biosensing Applications. SENSORS 2021; 21:s21093254. [PMID: 34066692 PMCID: PMC8125838 DOI: 10.3390/s21093254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
A generalization of the concept of multimode interference sensors is presented here for the first time, to the best of our knowledge. The existing bimodal and trimodal sensors correspond to particular cases of those interference sensors. A thorough study of the properties of the multimode waveguide section provided a deeper insight into the behavior of this class of sensors, which allowed us to establish new criteria for designing more sensitive structures. Other challenges of using high-order modes within the sensing area of the device reside in the excitation of these modes and the interpretation of the output signal. To overcome these, we developed a novel structure to excite any desired high-order mode along with the fundamental mode within the sensing section, while maintaining a fine control over the power distribution between them. A new strategy to detect and interpret the output signal is also presented in detail. Finally, we designed a high-order sensor for which numerical simulations showed a theoretical limit of detection of 1.9×10−7 RIU, making this device the most sensitive multimode interference sensor reported so far.
Collapse
|
5
|
Xu Y, Wang F, Gao Y, Zhang D, Sun X, Berini P. Straight Long-Range Surface Plasmon Polariton Waveguide Sensor Operating at l 0 = 850 nm. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2507. [PMID: 32354164 PMCID: PMC7273216 DOI: 10.3390/s20092507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/17/2022]
Abstract
A bulk refractive index sensor based on a straight long-range surface plasmon polariton (LRSPP) waveguide is theoretically designed. The waveguide sensor consists of an Au stripe that is embedded in ultraviolet sensitive polymer SU-8. The geometric parameters are optimized by finite difference eigenmode method at the optical wavelength of 850 nm. The sensitivity of 196 dB/RIU/mm can be obtained with a 1.5 μm wide, 25 nm thick Au stripe waveguide. Straight LRSPP waveguides are fabricated by a double layer lift-off process. Its optical transmission is characterized to experimentally prove the feasibility of the proposed design. This sensor has potential for the realization of a portable, low-cost refractometer.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China; (Y.X.); (F.W.); (Y.G.); (D.Z.)
| | - Fei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China; (Y.X.); (F.W.); (Y.G.); (D.Z.)
| | - Yang Gao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China; (Y.X.); (F.W.); (Y.G.); (D.Z.)
| | - Daming Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China; (Y.X.); (F.W.); (Y.G.); (D.Z.)
| | - Xiaoqiang Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China; (Y.X.); (F.W.); (Y.G.); (D.Z.)
| | - Pierre Berini
- School of Electrical Engineering and Computer Science, Department of Physics, and Center for Research in Photonics, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
6
|
Knoll W, Azzaroni O, Duran H, Kunze-Liebhäuser J, Lau KHA, Reimhult E, Yameen B. Nanoporous thin films in optical waveguide spectroscopy for chemical analytics. Anal Bioanal Chem 2020; 412:3299-3315. [PMID: 32107572 PMCID: PMC7214501 DOI: 10.1007/s00216-020-02452-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/03/2020] [Accepted: 01/23/2020] [Indexed: 01/02/2023]
Abstract
Spectroscopy with planar optical waveguides is still an active field of research for the quantitative analysis of various supramolecular surface architectures and processes, and for applications in integrated optical chip communication, direct chemical sensing, etc. In this contribution, we summarize some recent development in optical waveguide spectroscopy using nanoporous thin films as the planar substrates that can guide the light just as well as bulk thin films. This is because the nanoporosity is at a spacial length-scale that is far below the wavelength of the guided light; hence, it does not lead to an enhanced scattering or additional losses of the optical guided modes. The pores have mainly two effects: they generate an enormous inner surface (up to a factor of 100 higher than the mere geometric dimensions of the planar substrate) and they allow for the exchange of material and charges between the two sides of the solid thin film. We demonstrate this for several different scenarios including anodized aluminum oxide layers for the ultrasensitive determination of the refractive index of fluids, or the label-free detection of small analytes binding from the pore inner volume to receptors immobilized on the pore surface. Using a thin film of Ti metal for the anodization results in a nanotube array offering an even further enhanced inner surface and the possibility to apply electrical potentials via the resulting TiO2 semiconducting waveguide structure. Nanoporous substrates fabricated from SiNx thin films by colloid lithography, or made from SiO2 by e-beam lithography, will be presented as examples where the porosity is used to allow for the passage of ions in the case of tethered lipid bilayer membranes fused on top of the light-guiding layer, or the transport of protons through membranes used in fuel cell applications. The final example that we present concerns the replication of the nanopore structure by polymers in a process that leads to a nanorod array that is equally well suited to guide the light as the mold; however, it opens a totally new field for integrated optics formats for direct chemical and biomedical sensing with an extension to even molecularly imprinted structures. Graphical abstract.
Collapse
Affiliation(s)
- Wolfgang Knoll
- Competence Centre for Electrochemical Surface Technology, 2700, Wiener Neustadt, Austria.
- AIT Austrian Institute of Technology GmbH, 3430, Tulln an der Donau, Austria.
| | - Omar Azzaroni
- Competence Centre for Electrochemical Surface Technology, 2700, Wiener Neustadt, Austria
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de LaPlata - CONICET, 1900, La Plata, Argentina
| | - Hatice Duran
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560, Ankara, Turkey
| | - Julia Kunze-Liebhäuser
- Institute for Physical Chemistry, Leopold-Franzens-Universität Innsbruck, 6020, Innsbruck, Austria
| | - King Hang Aaron Lau
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Basit Yameen
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54762, Pakistan
| |
Collapse
|