1
|
Gao Y, Wang Y, Wu Y, Liu S. Biomaterials targeting the microenvironment for spinal cord injury repair: progression and perspectives. Front Cell Neurosci 2024; 18:1362494. [PMID: 38784712 PMCID: PMC11111957 DOI: 10.3389/fncel.2024.1362494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) disrupts nerve pathways and affects sensory, motor, and autonomic function. There is currently no effective treatment for SCI. SCI occurs within three temporal periods: acute, subacute, and chronic. In each period there are different alterations in the cells, inflammatory factors, and signaling pathways within the spinal cord. Many biomaterials have been investigated in the treatment of SCI, including hydrogels and fiber scaffolds, and some progress has been made in the treatment of SCI using multiple materials. However, there are limitations when using individual biomaterials in SCI treatment, and these limitations can be significantly improved by combining treatments with stem cells. In order to better understand SCI and to investigate new strategies for its treatment, several combination therapies that include materials combined with cells, drugs, cytokines, etc. are summarized in the current review.
Collapse
Affiliation(s)
- Yating Gao
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Zhou K, Wei W, Yang D, Zhang H, Yang W, Zhang Y, Nie Y, Hao M, Wang P, Ruan H, Zhang T, Wang S, Liu Y. Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury. Nat Commun 2024; 15:619. [PMID: 38242904 PMCID: PMC10799086 DOI: 10.1038/s41467-024-44898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
The neural signals produced by varying electrical stimulation parameters lead to characteristic neural circuit responses. However, the characteristics of neural circuits reconstructed by electrical signals remain poorly understood, which greatly limits the application of such electrical neuromodulation techniques for the treatment of spinal cord injury. Here, we develop a dual electrical stimulation system that combines epidural electrical and muscle stimulation to mimic feedforward and feedback electrical signals in spinal sensorimotor circuits. We demonstrate that a stimulus frequency of 10-20 Hz under dual stimulation conditions is required for structural and functional reconstruction of spinal sensorimotor circuits, which not only activates genes associated with axonal regeneration of motoneurons, but also improves the excitability of spinal neurons. Overall, the results provide insights into neural signal decoding during spinal sensorimotor circuit reconstruction, suggesting that the combination of epidural electrical and muscle stimulation is a promising method for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Kai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Wei Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Dan Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
- Department of Anatomy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Hui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Wei Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Yunpeng Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Mingming Hao
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
- Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, 315048, China
| | - Pengcheng Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hang Ruan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Baek J, Shan Y, Mylvaganan M, Zhang Y, Yang X, Qin F, Zhao K, Song HW, Mao H, Lee S. Mold-Free Manufacturing of Highly Sensitive and Fast-Response Pressure Sensors Through High-Resolution 3D Printing and Conformal Oxidative Chemical Vapor Deposition Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304070. [PMID: 37463430 DOI: 10.1002/adma.202304070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
A new manufacturing paradigm is showcased to exclude conventional mold-dependent manufacturing of pressure sensors, which typically requires a series of complex and expensive patterning processes. This mold-free manufacturing leverages high-resolution 3D-printed multiscale microstructures as the substrate and a gas-phase conformal polymer coating technique to complete the mold-free sensing platform. The array of dome and spike structures with a controlled spike density of a 3D-printed substrate ensures a large contact surface with pressures applied and extended linearity in a wider pressure range. For uniform coating of sensing elements on the microstructured surface, oxidative chemical vapor deposition is employed to deposit a highly conformal and conductive sensing element, poly(3,4-ethylenedioxythiophene) at low temperatures (<60 °C). The fabricated pressure sensor reacts sensitively to various ranges of pressures (up to 185 kPa-1 ) depending on the density of the multiscale features and shows an ultrafast response time (≈36 µs). The mechanism investigations through the finite element analysis identify the effect of the multiscale structure on the figure-of-merit sensing performance. These unique findings are expected to be of significant relevance to technology that requires higher sensing capability, scalability, and facile adjustment of a sensor geometry in a cost-effective manufacturing manner.
Collapse
Affiliation(s)
- Jinwook Baek
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Yujie Shan
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Mitesh Mylvaganan
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Yuxuan Zhang
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Xixian Yang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Fei Qin
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Kejie Zhao
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Han Wook Song
- Center for Mass and Related Quantities, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Huachao Mao
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| | - Sunghwan Lee
- School of Engineering Technology, Purdue University, 401 N. Grant Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Liu X, Hao M, Chen Z, Zhang T, Huang J, Dai J, Zhang Z. 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials 2021; 272:120771. [PMID: 33798962 DOI: 10.1016/j.biomaterials.2021.120771] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising approach to fabricate living neural constructs with anatomically accurate complex geometries and spatial distributions of neural stem cells (NSCs) for spinal cord injury (SCI) repair. The NSC-laden 3D bioprinting, however, still faces some big challenges, such as cumbersome printing process, poor cell viability, and minimal cell-material interaction. To address these issues, we have fabricated NSC-laden scaffolds by 3D bioprinting and explore for the first time their application for in vivo SCI repair. In our strategy, we have developed a novel biocompatible bioink consisting of functional chitosan, hyaluronic acid derivatives, and matrigel. This bioink shows fast gelation (within 20 s) and spontaneous covalent crosslinking capability, facilitating convenient one-step bioprinting of spinal cord-like constructs. Thus-fabricated scaffolds maintain high NSC viability (about 95%), and offer a benign microenvironment that facilitates cell-material interactions and neuronal differentiation for optimal formation of neural network. The in vivo experiment has further demonstrated that the bioprinted scaffolds promoted the axon regeneration and decreased glial scar deposition, leading to significant locomotor recovery of the SCI model rats, which may represent a general and versatile strategy for precise engineering of central nervous system and other neural organs/tissues for regenerative medicine application.
Collapse
Affiliation(s)
- Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Mingming Hao
- I-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ting Zhang
- I-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| | - Jianwu Dai
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
He F, You X, Wang W, Bai T, Xue G, Ye M. Recent Progress in Flexible Microstructural Pressure Sensors toward Human-Machine Interaction and Healthcare Applications. SMALL METHODS 2021; 5:e2001041. [PMID: 34927827 DOI: 10.1002/smtd.202001041] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Indexed: 05/19/2023]
Abstract
With the rapid growth of artificial intelligence, wearable electronic devices have caught intensive research interest recently. Flexible sensors, as the significant part of them, have become the focus of research. Particularly, flexible microstructural pressure sensors (FMPSs) have attracted extensive attention because of their controllable shape, small size, and high sensitivity. Microstructures are of great significance to improve the sensitivity and response time of FMPSs. The FMPSs present great application prospects in medical health, human-machine interaction, electronic products, and so on. In this review, a series of microstructures (e.g., wave, pillar, and pyramid shapes) which have been elaborately designed to effectively enhance the sensing performance of FMPSs are introduced in detail. Various fabrication strategies of these FMPSs are comprehensively summarized, including template (e.g., silica, anodic aluminum oxide, and bionic patterns), pre-stressing, and magnetic field regulation methods. In addition, the materials (e.g., carbon, polymer, and piezoelectric materials) used to prepare FMPSs are also discussed. Moreover, the potential applications of FMPSs in human-machine interaction and healthcare fields are emphasized as well. Finally, the advantages and latest development of FMPSs are further highlighted, and the challenges and potential prospects of high-performance FMPSs are outlined.
Collapse
Affiliation(s)
- Faliang He
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Xingyan You
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Weiguo Wang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Tian Bai
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gaofei Xue
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Meidan Ye
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
6
|
Peng Y, Zhou J, Song X, Pang K, Samy A, Hao Z, Wang J. A Flexible Pressure Sensor with Ink Printed Porous Graphene for Continuous Cardiovascular Status Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:E485. [PMID: 33445532 PMCID: PMC7828094 DOI: 10.3390/s21020485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 01/01/2023]
Abstract
Flexible electronics with continuous monitoring ability a extensively preferred in various medical applications. In this work, a flexible pressure sensor based on porous graphene (PG) is proposed for continuous cardiovascular status monitoring. The whole sensor is fabricated in situ by ink printing technology, which grants it the potential for large-scale manufacture. Moreover, to enhance its long-term usage ability, a polyethylene terephthalate/polyethylene vinylacetate (PET/EVA)-laminated film is employed to protect the sensor from unexpected shear forces on the skin surface. The sensor exhibits great sensitivity (53.99/MPa), high resolution (less than 0.3 kPa), wide detecting range (0.3 kPa to 1 MPa), desirable robustness, and excellent repeatability (1000 cycles). With the assistance of the proposed pressure sensor, vital cardiovascular conditions can be accurately monitored, including heart rate, respiration rate, pulse wave velocity, and blood pressure. Compared to other sensors based on self-supporting 2D materials, this sensor can endure more complex environments and has enormous application potential for the medical community.
Collapse
Affiliation(s)
- Yuxin Peng
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Jingzhi Zhou
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Xian Song
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Kai Pang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Akram Samy
- Department of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
| | - Zengming Hao
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| |
Collapse
|