1
|
Shamshiri RR, Rad AK, Behjati M, Balasundram SK. Sensing and Perception in Robotic Weeding: Innovations and Limitations for Digital Agriculture. SENSORS (BASEL, SWITZERLAND) 2024; 24:6743. [PMID: 39460222 PMCID: PMC11510896 DOI: 10.3390/s24206743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
The challenges and drawbacks of manual weeding and herbicide usage, such as inefficiency, high costs, time-consuming tasks, and environmental pollution, have led to a shift in the agricultural industry toward digital agriculture. The utilization of advanced robotic technologies in the process of weeding serves as prominent and symbolic proof of innovations under the umbrella of digital agriculture. Typically, robotic weeding consists of three primary phases: sensing, thinking, and acting. Among these stages, sensing has considerable significance, which has resulted in the development of sophisticated sensing technology. The present study specifically examines a variety of image-based sensing systems, such as RGB, NIR, spectral, and thermal cameras. Furthermore, it discusses non-imaging systems, including lasers, seed mapping, LIDAR, ToF, and ultrasonic systems. Regarding the benefits, we can highlight the reduced expenses and zero water and soil pollution. As for the obstacles, we can point out the significant initial investment, limited precision, unfavorable environmental circumstances, as well as the scarcity of professionals and subject knowledge. This study intends to address the advantages and challenges associated with each of these sensing technologies. Moreover, the technical remarks and solutions explored in this investigation provide a straightforward framework for future studies by both scholars and administrators in the context of robotic weeding.
Collapse
Affiliation(s)
- Redmond R. Shamshiri
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Abdullah Kaviani Rad
- Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
| | - Maryam Behjati
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Siva K. Balasundram
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
2
|
Investigation on the use of ensemble learning and big data in crop identification. Heliyon 2023; 9:e13339. [PMID: 36820038 PMCID: PMC9937907 DOI: 10.1016/j.heliyon.2023.e13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
The agriculture sector in Egypt faces several problems, such as climate change, water storage, and yield variability. The comprehensive capabilities of Big Data (BD) can help in tackling the uncertainty of food supply occurs due to several factors such as soil erosion, water pollution, climate change, socio-cultural growth, governmental regulations, and market fluctuations. Crop identification and monitoring plays a vital role in modern agriculture. Although several machine learning models have been utilized in identifying crops, the performance of ensemble learning has not been investigated extensively. The massive volume of satellite imageries has been established as a big data problem forcing to deploy the proposed solution using big data technologies to manage, store, analyze, and visualize satellite data. In this paper, we have developed a weighted voting mechanism for improving crop classification performance in a large scale, based on ensemble learning and big data schema. Built upon Apache Spark, the popular DB Framework, the proposed approach was tested on El Salheya, Ismaili governate. The proposed ensemble approach boosted accuracy by 6.5%, 1.9%, 4.4%, 4.9%, 4.7% in precision, recall, F-score, Overall Accuracy (OA), and Matthews correlation coefficient (MCC) metrics respectively. Our findings confirm the generalization of the proposed crop identification approach at a large-scale setting.
Collapse
|
3
|
Hair Fescue and Sheep Sorrel Identification Using Deep Learning in Wild Blueberry Production. REMOTE SENSING 2021. [DOI: 10.3390/rs13050943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deep learning convolutional neural networks (CNNs) are an emerging technology that provide an opportunity to increase agricultural efficiency through remote sensing and automatic inferencing of field conditions. This paper examined the novel use of CNNs to identify two weeds, hair fescue and sheep sorrel, in images of wild blueberry fields. Commercial herbicide sprayers provide a uniform application of agrochemicals to manage patches of these weeds. Three object-detection and three image-classification CNNs were trained to identify hair fescue and sheep sorrel using images from 58 wild blueberry fields. The CNNs were trained using 1280x720 images and were tested at four different internal resolutions. The CNNs were retrained with progressively smaller training datasets ranging from 3780 to 472 images to determine the effect of dataset size on accuracy. YOLOv3-Tiny was the best object-detection CNN, detecting at least one target weed per image with F1-scores of 0.97 for hair fescue and 0.90 for sheep sorrel at 1280 × 736 resolution. Darknet Reference was the most accurate image-classification CNN, classifying images containing hair fescue and sheep sorrel with F1-scores of 0.96 and 0.95, respectively at 1280 × 736. MobileNetV2 achieved comparable results at the lowest resolution, 864 × 480, with F1-scores of 0.95 for both weeds. Training dataset size had minimal effect on accuracy for all CNNs except Darknet Reference. This technology can be used in a smart sprayer to control target specific spray applications, reducing herbicide use. Future work will involve testing the CNNs for use on a smart sprayer and the development of an application to provide growers with field-specific information. Using CNNs to improve agricultural efficiency will create major cost-savings for wild blueberry producers.
Collapse
|
4
|
A Quadratic Traversal Algorithm of Shortest Weeding Path Planning for Agricultural Mobile Robots in Cornfield. JOURNAL OF ROBOTICS 2021. [DOI: 10.1155/2021/6633139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to improve the weeding efficiency and protect farm crops, accurate and fast weeds removal guidance to agricultural mobile robots is an utmost important topic. Based on this motivation, we propose a time-efficient quadratic traversal algorithm for the removal guidance of weeds around the recognized corn in the field. To recognize the weeds and corns, a Faster R-CNN neural network is implemented in real-time recognition. Then, an ultra-green characterization (EXG) hyperparameter is used for grayscale image processing. An improved OTSU (IOTSU) algorithm is proposed to accurately generate and optimize the binary image. Compared to the traditional OTSU algorithm, the improved OTSU algorithm effectively shortens the search speed of the algorithm and reduces the calculation processing time by compressing the range of the search grayscale range. Finally, based on the contour of the target plants and the Canny edge detection operator, the shortest weeding path guidance can be calculated by the proposed quadratic traversal algorithm. The experimental results proved that our search success rate can reach 90.0% on the testing date. This result ensured the accurate selection of the target 2D coordinates in the pixel coordinate system. Transforming the target 2D coordinate point in the pixel coordinate system into the 3D coordinate point in the camera coordinate system as well as using a depth camera can achieve multitarget depth ranging and path planning for an optimized weeding path.
Collapse
|
5
|
Chen Y, Wu Z, Zhao B, Fan C, Shi S. Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine. SENSORS 2020; 21:s21010212. [PMID: 33396255 PMCID: PMC7796182 DOI: 10.3390/s21010212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022]
Abstract
Detection of weeds and crops is the key step for precision spraying using the spraying herbicide robot and precise fertilization for the agriculture machine in the field. On the basis of k-mean clustering image segmentation using color information and connected region analysis, a method combining multi feature fusion and support vector machine (SVM) was proposed to identify and detect the position of corn seedlings and weeds, to reduce the harm of weeds on corn growth, and to achieve accurate fertilization, thereby realizing precise weeding or fertilizing. First, the image dataset for weed and corn seedling classification in the corn seedling stage was established. Second, many different features of corn seedlings and weeds were extracted, and dimensionality was reduced by principal component analysis, including the histogram of oriented gradient feature, rotation invariant local binary pattern (LBP) feature, Hu invariant moment feature, Gabor feature, gray level co-occurrence matrix, and gray level-gradient co-occurrence matrix. Then, the classifier training based on SVM was conducted to obtain the recognition model for corn seedlings and weeds. The comprehensive recognition performance of single feature or different fusion strategies for six features is compared and analyzed, and the optimal feature fusion strategy is obtained. Finally, by utilizing the actual corn seedling field images, the proposed weed and corn seedling detection method effect was tested. LAB color space and K-means clustering were used to achieve image segmentation. Connected component analysis was adopted to remove small objects. The previously trained recognition model was utilized to identify and label each connected region to identify and detect weeds and corn seedlings. The experimental results showed that the fusion feature combination of rotation invariant LBP feature and gray level-gradient co-occurrence matrix based on SVM classifier obtained the highest classification accuracy and accurately detected all kinds of weeds and corn seedlings. It provided information on weed and crop positions to the spraying herbicide robot for accurate spraying or to the precise fertilization machine for accurate fertilizing.
Collapse
Affiliation(s)
- Yajun Chen
- Department of Information Science, Xi’an University of Technology, Xi’an 710048, China; (Z.W.); (C.F.)
- Correspondence: ; Tel.: +86-29-8231-2554
| | - Zhangnan Wu
- Department of Information Science, Xi’an University of Technology, Xi’an 710048, China; (Z.W.); (C.F.)
| | - Bo Zhao
- Chinese Academy of Agricultural Mechanization Sciences, Beijing 100083, China;
| | - Caixia Fan
- Department of Information Science, Xi’an University of Technology, Xi’an 710048, China; (Z.W.); (C.F.)
| | - Shuwei Shi
- Zhengzhou Cotton & Jute Engineering Technology and Design Research Institute, Zhengzhou 451162, China;
| |
Collapse
|
6
|
Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. REMOTE SENSING 2020. [DOI: 10.3390/rs12162659] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Remote sensing is a useful tool for monitoring spatio-temporal variations of crop morphological and physiological status and supporting practices in precision farming. In comparison with multispectral imaging, hyperspectral imaging is a more advanced technique that is capable of acquiring a detailed spectral response of target features. Due to limited accessibility outside of the scientific community, hyperspectral images have not been widely used in precision agriculture. In recent years, different mini-sized and low-cost airborne hyperspectral sensors (e.g., Headwall Micro-Hyperspec, Cubert UHD 185-Firefly) have been developed, and advanced spaceborne hyperspectral sensors have also been or will be launched (e.g., PRISMA, DESIS, EnMAP, HyspIRI). Hyperspectral imaging is becoming more widely available to agricultural applications. Meanwhile, the acquisition, processing, and analysis of hyperspectral imagery still remain a challenging research topic (e.g., large data volume, high data dimensionality, and complex information analysis). It is hence beneficial to conduct a thorough and in-depth review of the hyperspectral imaging technology (e.g., different platforms and sensors), methods available for processing and analyzing hyperspectral information, and recent advances of hyperspectral imaging in agricultural applications. Publications over the past 30 years in hyperspectral imaging technology and applications in agriculture were thus reviewed. The imaging platforms and sensors, together with analytic methods used in the literature, were discussed. Performances of hyperspectral imaging for different applications (e.g., crop biophysical and biochemical properties’ mapping, soil characteristics, and crop classification) were also evaluated. This review is intended to assist agricultural researchers and practitioners to better understand the strengths and limitations of hyperspectral imaging to agricultural applications and promote the adoption of this valuable technology. Recommendations for future hyperspectral imaging research for precision agriculture are also presented.
Collapse
|
7
|
Advanced Machine Learning in Point Spectroscopy, RGB- and Hyperspectral-Imaging for Automatic Discriminations of Crops and Weeds: A Review. SMART CITIES 2020. [DOI: 10.3390/smartcities3030039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crop productivity is readily reduced by competition from weeds. It is particularly important to control weeds early to prevent yield losses. Limited herbicide choices and increasing costs of weed management are threatening the profitability of crops. Smart agriculture can use intelligent technology to accurately measure the distribution of weeds in the field and perform weed control tasks in selected areas, which cannot only improve the effectiveness of pesticides, but also increase the economic benefits of agricultural products. The most important thing for an automatic system to remove weeds within crop rows is to utilize reliable sensing technology to achieve accurate differentiation of weeds and crops at specific locations in the field. In recent years, there have been many significant achievements involving the differentiation of crops and weeds. These studies are related to the development of rapid and non-destructive sensors, as well as the analysis methods for the data obtained. This paper presents a review of the use of three sensing methods including spectroscopy, color imaging, and hyperspectral imaging in the discrimination of crops and weeds. Several algorithms of machine learning have been employed for data analysis such as convolutional neural network (CNN), artificial neural network (ANN), and support vector machine (SVM). Successful applications include the weed detection in grain crops (such as maize, wheat, and soybean), vegetable crops (such as tomato, lettuce, and radish), and fiber crops (such as cotton) with unsupervised or supervised learning. This review gives a brief introduction into proposed sensing and machine learning methods, then provides an overview of instructive examples of these techniques for weed/crop discrimination. The discussion describes the recent progress made in the development of automated technology for accurate plant identification as well as the challenges and future prospects. It is believed that this review is of great significance to those who study automatic plant care in crops using intelligent technology.
Collapse
|