1
|
Paredes-Acuna N, Utpadel-Fischler D, Ding K, Thakor NV, Cheng G. Upper limb intention tremor assessment: opportunities and challenges in wearable technology. J Neuroeng Rehabil 2024; 21:8. [PMID: 38218890 PMCID: PMC10787996 DOI: 10.1186/s12984-023-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Tremors are involuntary rhythmic movements commonly present in neurological diseases such as Parkinson's disease, essential tremor, and multiple sclerosis. Intention tremor is a subtype associated with lesions in the cerebellum and its connected pathways, and it is a common symptom in diseases associated with cerebellar pathology. While clinicians traditionally use tests to identify tremor type and severity, recent advancements in wearable technology have provided quantifiable ways to measure movement and tremor using motion capture systems, app-based tasks and tools, and physiology-based measurements. However, quantifying intention tremor remains challenging due to its changing nature. METHODOLOGY & RESULTS This review examines the current state of upper limb tremor assessment technology and discusses potential directions to further develop new and existing algorithms and sensors to better quantify tremor, specifically intention tremor. A comprehensive search using PubMed and Scopus was performed using keywords related to technologies for tremor assessment. Afterward, screened results were filtered for relevance and eligibility and further classified into technology type. A total of 243 publications were selected for this review and classified according to their type: body function level: movement-based, activity level: task and tool-based, and physiology-based. Furthermore, each publication's methods, purpose, and technology are summarized in the appendix table. CONCLUSIONS Our survey suggests a need for more targeted tasks to evaluate intention tremors, including digitized tasks related to intentional movements, neurological and physiological measurements targeting the cerebellum and its pathways, and signal processing techniques that differentiate voluntary from involuntary movement in motion capture systems.
Collapse
Affiliation(s)
- Natalia Paredes-Acuna
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany.
| | - Daniel Utpadel-Fischler
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Keqin Ding
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gordon Cheng
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
| |
Collapse
|
2
|
Fujikawa J, Morigaki R, Yamamoto N, Nakanishi H, Oda T, Izumi Y, Takagi Y. Diagnosis and Treatment of Tremor in Parkinson's Disease Using Mechanical Devices. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010078. [PMID: 36676025 PMCID: PMC9863142 DOI: 10.3390/life13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Parkinsonian tremors are sometimes confused with essential tremors or other conditions. Recently, researchers conducted several studies on tremor evaluation using wearable sensors and devices, which may support accurate diagnosis. Mechanical devices are also commonly used to treat tremors and have been actively researched and developed. Here, we aimed to review recent progress and the efficacy of the devices related to Parkinsonian tremors. METHODS The PubMed and Scopus databases were searched for articles. We searched for "Parkinson disease" and "tremor" and "device". RESULTS Eighty-six articles were selected by our systematic approach. Many studies demonstrated that the diagnosis and evaluation of tremors in patients with PD can be done accurately by machine learning algorithms. Mechanical devices for tremor suppression include deep brain stimulation (DBS), electrical muscle stimulation, and orthosis. In recent years, adaptive DBS and optimization of stimulation parameters have been studied to further improve treatment efficacy. CONCLUSIONS Due to developments using state-of-the-art techniques, effectiveness in diagnosing and evaluating tremor and suppressing it using these devices is satisfactorily high in many studies. However, other than DBS, no devices are in practical use. To acquire high-level evidence, large-scale studies and randomized controlled trials are needed for these devices.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Parkinson’s Disease and Dystonia Research Center, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Correspondence: ; Tel.: +81-88-633-7149
| | - Nobuaki Yamamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Beauty Life Corporation, 2 Kiba-Cho, Minato-Ku, Nagoya 455-0021, Aichi, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Yuishin Izumi
- Parkinson’s Disease and Dystonia Research Center, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| |
Collapse
|
3
|
Carminati M, Scandurra G. Impact and trends in embedding field programmable gate arrays and microcontrollers in scientific instrumentation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:091501. [PMID: 34598486 DOI: 10.1063/5.0050999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Microcontrollers and field-programmable gate arrays have been largely leveraged in scientific instrumentation since decades. Recent advancements in the performance of these programmable digital devices, with hundreds of I/O pins, up to millions of logic cells, >10 Gb/s connectivity, and hundreds of MHz multiple clocks, have been accelerating this trend, extending the range of functions. The diversification of devices from very low-cost 8-bit microcontrollers up to 32-bit ARM-based ones and a system of chip combining programmable logic with processors make them ubiquitous in modern electronic systems, addressing diverse challenges from ultra-low power operation, with sub-µA quiescent current in sleep mode for portable and Internet of Things applications, to high-performance computing, such as in machine vision. In this Review, the main motivations (compactness, re-configurability, parallelization, low latency for sub-ns timing, and real-time control), the possible approaches of the adoption of embedded devices, and the achievable performances are discussed. Relevant examples of applications in opto-electronics, physics experiments, impedance, vibration, and temperature sensing from the recent literature are also reviewed. From this bird-eye view, key paradigms emerge, such as the blurring of boundaries between digital platforms and the pervasiveness of machine learning algorithms, significantly fostered by the possibility to be run in embedded devices for distributing intelligence in the environment.
Collapse
Affiliation(s)
- M Carminati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - G Scandurra
- Dipartimento di Ingegneria, Università degli Studi di Messina, Messina 98166, Italy
| |
Collapse
|
4
|
Iakovidis DK. Sensors, Signal and Image Processing in Biomedicine and Assisted Living. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20185071. [PMID: 32906653 PMCID: PMC7570588 DOI: 10.3390/s20185071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Sensor technologies are crucial in biomedicine, as the biomedical systems and devices used for screening and diagnosis rely on their efficiency and effectiveness [...].
Collapse
Affiliation(s)
- Dimitris K Iakovidis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| |
Collapse
|