1
|
Muñoz-Galán H, Alemán C, Pérez-Madrigal MM. Beyond biology: alternative uses of cantilever-based technologies. LAB ON A CHIP 2023; 23:1128-1150. [PMID: 36636915 DOI: 10.1039/d2lc00873d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Micromechanical cantilever sensors are attracting a lot of attention because of the need for characterizing, detecting, and monitoring chemical and physical properties, as well as compounds at the nanoscale. The fields of application of micro-cantilever sensors span from biological and point-of-care, to military or industrial sectors. The purpose of this work focuses on thermal and mechanical characterization, environmental monitoring, and chemical detection, in order to provide a technical review of the most recent technical advances and applications, as well as the future prospective of micro-cantilever sensor research.
Collapse
Affiliation(s)
- Helena Muñoz-Galán
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Maria M Pérez-Madrigal
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Kozlenko AS, Ozhogin IV, Pugachev AD, Lukyanova MB, El-Sewify IM, Lukyanov BS. A Modern Look at Spiropyrans: From Single Molecules to Smart Materials. Top Curr Chem (Cham) 2023; 381:8. [PMID: 36624333 DOI: 10.1007/s41061-022-00417-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Photochromic compounds of the spiropyran family have two main isomers capable of inter-switching with UV or visible light. In the current review, we discuss recent advances in the synthesis, investigation of properties, and applications of spiropyran derivatives. Spiropyrans of the indoline series are in focus as the most promising representatives of multi-sensitive spirocyclic compounds, which can be switched by a number of external stimuli, including light, temperature, pH, presence of metal ions, and mechanical stress. Particular attention is paid to the structural features of molecules, their influence on photochromic properties, and the reactions taking place during isomerization, as the understanding of the structure-property relationships will rationalize the synthesis of compounds with predetermined characteristics. The main prospects for applications of spiropyrans in such fields as smart material production, molecular electronics and nanomachinery, sensing of environmental and biological molecules, and photopharmacology are also discussed.
Collapse
Affiliation(s)
- Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia.
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Islam M El-Sewify
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia.,Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| |
Collapse
|
3
|
Aleksandrova M, Kolev G, Dobrikov G, Brigadin A, Lukin A. Unlocking the Carbyne-Enriched Nanocoating Sensitivity to Volatile Organic Vapors with Plasma-Driven Deposition onto Bulk Micromachined Silicon Membranes. NANOMATERIALS 2022; 12:nano12122066. [PMID: 35745404 PMCID: PMC9229548 DOI: 10.3390/nano12122066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Due to the unique combination of physicochemical and structural properties of carbyne-enriched nanocoatings, they can be used for the development of high-end electronic devices. We propose using it for the development of sensor platforms based on silicon bulk micromachined membranes that serve as a part of microcapacitors with flexible electrodes, with various sizes and topologies. The carbyne-enriched nanocoating was grown using the ion-assisted pulse-plasma deposition method in the form of 2D-ordered linear-chain carbon with interchain spacing in the range of approximately 4.8–5.03 Å. The main characteristics of the fabricated sensors, such as dynamic range, sensitivity, linearity, response, and recovery times, were measured as a function of the ethanol concentration and compared for the different sizes of the micromembranes and for the different surface states, such as patterned and non-patterned. The obtained results are the first step in the further optimization of these sensor platforms to reach more precise detection of volatile organic compounds for the needs of the healthcare, air monitoring, and other relevant fields of human health.
Collapse
Affiliation(s)
- Mariya Aleksandrova
- Department of Microelectronics, Technical University of Sofia, 1000 Sofia, Bulgaria; (G.K.); (G.D.)
- Correspondence: ; Tel.: +359-2-965-30-85
| | - Georgi Kolev
- Department of Microelectronics, Technical University of Sofia, 1000 Sofia, Bulgaria; (G.K.); (G.D.)
| | - Georgi Dobrikov
- Department of Microelectronics, Technical University of Sofia, 1000 Sofia, Bulgaria; (G.K.); (G.D.)
| | | | | |
Collapse
|
4
|
Gas-Sensing Properties of a Carbyne-Enriched Nanocoating Deposited onto Surface Acoustic Wave Composite Substrates with Various Electrode Topologies. CRYSTALS 2022. [DOI: 10.3390/cryst12040501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The application of carbyne-enriched nanomaterials opens unique possibilities for enhancing the functional properties of several nanomaterials and unlocking their full potential for practical applications in high-end devices. We studied the ethanol-vapor-sensing performance of a carbyne-enriched nanocoating deposited onto surface acoustic wave (SAW) composite substrates with various electrode topologies. The carbyne-enriched nanocoating was grown using the ion-assisted pulse-plasma deposition technique. Such carbon nanostructured metamaterials were named 2D-ordered linear-chain carbon, where they represented a two-dimensionally packed hexagonal array of carbon chains held by the van der Waals forces, with the interchain spacing approximately being between 4.8 and 5.03 Å. The main characteristics of the sensing device, such as dynamic range, linearity, sensitivity, and response and recovery times, were measured as a function of the ethanol concentration. To the authors’ knowledge, this was the first time demonstration of the detection ability of carbyne-enriched material to ethanol vapors. The results may pave the path for optimization of these sensor architectures for the precise detection of volatile organic compounds, with applications in the fields of medicine, healthcare, and air composition monitoring.
Collapse
|
5
|
Pujol-Vila F, Escudero P, Güell-Grau P, Pascual-Izarra C, Villa R, Alvarez M. Direct Color Observation of Light-Driven Molecular Conformation-Induced Stress. SMALL METHODS 2022; 6:e2101283. [PMID: 35174993 DOI: 10.1002/smtd.202101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Although usually complex to handle, nanomechanical sensors are exceptional, label-free tools for monitoring molecular conformational changes, which makes them of paramount importance in understanding biomolecular interactions. Herein, a simple and inexpensive mechanical imaging approach based on low-stiffness cantilevers with structural coloration (mechanochromic cantilevers (MMC)) is demonstrated, able to monitor and quantify molecular conformational changes with similar sensitivity to the classical optical beam detection method of cantilever-based sensors (≈4.6 × 10-3 N m-1 ). This high sensitivity is achieved by using a white light and an RGB camera working in the reflection configuration. The sensor performance is demonstrated by monitoring the UV-light induced reversible conformational changes of azobenzene molecules coating. The trans-cis isomerization of the azobenzene molecules induces a deflection of the cantilevers modifying their diffracted color, which returns to the initial state by cis-trans relaxation. Interestingly, the mechanical imaging enables a simultaneous 2D mapping of the response thus enhancing the spatial resolution of the measurements. A tight correlation is found between the color output and the cantilever's deflection and curvature angle (sensitivities of 5 × 10-3 Hue µm-1 and 1.5 × 10-1 Hue (°)-1 ). These findings highlight the suitability of low-stiffness MMC as an enabling technology for monitoring molecular changes with unprecedented simplicity, high-throughput capability, and functionalities.
Collapse
Affiliation(s)
- Ferran Pujol-Vila
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Pedro Escudero
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Facultad de Ingeniería y Tecnologías de la Información y la Comunicación, Universidad Tecnológica Indoamérica, Ambato, 180103, Ecuador
| | - Pau Güell-Grau
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | | | - Rosa Villa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018, Madrid, Spain
| | - Mar Alvarez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018, Madrid, Spain
| |
Collapse
|
6
|
Spiropyrans: molecules in motion. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Alunda BO, Lee YJ. Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4784. [PMID: 32854193 PMCID: PMC7506678 DOI: 10.3390/s20174784] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
This review critically summarizes the recent advances of the microcantilever-based force sensors for atomic force microscope (AFM) applications. They are one the most common mechanical spring-mass systems and are extremely sensitive to changes in the resonant frequency, thus finding numerous applications especially for molecular sensing. Specifically, we comment on the latest progress in research on the deflection detection systems, fabrication, coating and functionalization of the microcantilevers and their application as bio- and chemical sensors. A trend on the recent breakthroughs on the study of biological samples using high-speed atomic force microscope is also reported in this review.
Collapse
Affiliation(s)
- Bernard Ouma Alunda
- School of Mines and Engineering, Taita Taveta University, P.O. Box 635-80300 Voi, Kenya;
| | - Yong Joong Lee
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|