1
|
Khamis T, Khamis AA, Al Kouzbary M, Al Kouzbary H, Mokayed H, AbdRazak NA, AbuOsman NA. Automated transtibial prosthesis alignment: A systematic review. Artif Intell Med 2024; 156:102966. [PMID: 39197376 DOI: 10.1016/j.artmed.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/20/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
This comprehensive systematic review critically analyzes the current progress and challenges in automating transtibial prosthesis alignment. The manual identification of alignment changes in prostheses has been found to lack reliability, necessitating the development of automated processes. Through a rigorous systematic search across major electronic databases, this review includes the highly relevant studies out of an initial pool of 2111 records. The findings highlight the urgent need for automated alignment systems in individuals with transtibial amputation. The selected studies represent cutting-edge research, employing diverse approaches such as advanced machine learning algorithms and innovative alignment tools, to automate the detection and adjustment of prosthesis alignment. Collectively, this review emphasizes the immense potential of automated transtibial prosthesis alignment systems to enhance alignment accuracy and significantly reduce human error. Furthermore, it identifies important limitations in the reviewed studies, serving as a catalyst for future research to address these gaps and explore alternative machine learning algorithms. The insights derived from this systematic review provide valuable guidance for researchers, clinicians, and developers aiming to propel the field of automated transtibial prosthesis alignment forward.
Collapse
Affiliation(s)
- Taha Khamis
- Center for Applied Biomechanics, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Abd Alghani Khamis
- Center for Applied Biomechanics, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mouaz Al Kouzbary
- Center for Applied Biomechanics, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamza Al Kouzbary
- Center for Applied Biomechanics, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamam Mokayed
- Department of Computer Science, Electrical and Space Engineering, Lulea ̊University of Technology, Lulea ̊, Sweden
| | - Nasrul Anuar AbdRazak
- Center for Applied Biomechanics, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Azuan AbuOsman
- Center for Applied Biomechanics, Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia; The Chancellery, Universiti Tenaga Nasional, 43000 Kajang, Malaysia.
| |
Collapse
|
2
|
Duan A, Xiang Z, Fan Y, Duan W, Wei Q, Duan X. Evaluating the clinical efficacy of the anterolateral thigh flap in lower limb reconstruction surgeries: a systematic review and meta-analysis. Am J Transl Res 2024; 16:3326-3337. [PMID: 39114696 PMCID: PMC11301478 DOI: 10.62347/hfve6316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To comprehensively assess the clinical efficacy of the anterolateral thigh flap in lower limb reconstruction (LLR) surgeries and explore its application value via a meta-analysis. METHODS Published articles on the efficacy of anterolateral thigh flap in LLR were retrieved in English databases such as PubMed, Web of Science, Embase, and The Cochrane Library, which were searched from their inception to November 2023. The search terms included "anterolateral thigh flaps", "lower extremity", "free muscle" and "reconstruction". Subsequently, data extraction of eligible studies was carried out, and data analysis was conducted using RevMan 5.3 software. RESULTS The final selection comprised 12 appropriate studies, encompassing a total of 577 patients. Meta-analysis demonstrated that negligible differences existed in the length of hospital stay among patients treated with different types of flaps (mean difference (MD) =-0.10, 95% confidence interval (CI) =-0.400.20, P>0.05). Additionally, the occurrence of complications differed slightly (Risk difference (RD) =-0.02, 95% CI=-0.090.05, P>0.05). The incidence of secondary surgeries also demonstrated non-significant differences (RD=-0.04, 95% CI=-0.11-0.04, P>0.05). Nevertheless, patients who underwent anterolateral thigh flap transplantation exhibited a drastic decrease in donor site morbidity (Odds ratio (OR) =0.22, 95% CI=0.10-0.49, P<0.05). CONCLUSION The clinical efficacy of the anterolateral thigh flap in LLR surgeries shows no significant differences in hospital stay, complication rates, or the need for secondary surgeries compared to other flaps. However, using anterolateral thigh flap in LLR significantly reduces donor site morbidity.
Collapse
Affiliation(s)
- Alin Duan
- Department of Orthopedics, West China Hospital of Sichuan UniversityChengdu 610041, Sichuan, China
- Department of Restoration and Reconstruction, No. 1 Orthopedics Hospital of ChengduChengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital of Sichuan UniversityChengdu 610041, Sichuan, China
| | - Yongxi Fan
- Department of Restoration and Reconstruction, No. 1 Orthopedics Hospital of ChengduChengdu 610041, Sichuan, China
| | - Weinan Duan
- Department of Restoration and Reconstruction, No. 1 Orthopedics Hospital of ChengduChengdu 610041, Sichuan, China
| | - Qingyu Wei
- Department of Restoration and Reconstruction, No. 1 Orthopedics Hospital of ChengduChengdu 610041, Sichuan, China
| | - Xin Duan
- Department of Orthopedics, West China Hospital of Sichuan UniversityChengdu 610041, Sichuan, China
| |
Collapse
|
3
|
Valette R, Gonzalez-Vargas J, Dosen S. The impact of walking on the perception of multichannel electrotactile stimulation in individuals with lower-limb amputation and able-bodied participants. J Neuroeng Rehabil 2023; 20:108. [PMID: 37592336 PMCID: PMC10436512 DOI: 10.1186/s12984-023-01234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND One of the drawbacks of lower-limb prostheses is that they do not provide explicit somatosensory feedback to their users. Electrotactile stimulation is an attractive technology to restore such feedback because it enables compact solutions with multiple stimulation points. This allows stimulating a larger skin area to provide more information concurrently and modulate parameters spatially as well as in amplitude. However, for effective use, electrotactile stimulation needs to be calibrated and it would be convenient to perform this procedure while the subject is seated. However, amplitude and spatial perception can be affected by motion and/or physical coupling between the residual limb and the socket. In the present study, we therefore evaluated and compared the psychometric properties of multichannel electrotactile stimulation applied to the thigh/residual limb during sitting versus walking. METHODS The comprehensive assessment included the measurement of the sensation and discomfort thresholds (ST & DT), just noticeable difference (JND), number of distinct intervals (NDI), two-point discrimination threshold (2PD), and spatial discrimination performance (SD). The experiment involved 11 able-bodied participants (4 females and 7 males; 29.2 ± 3.8 years), 3 participants with transtibial amputation, and 3 participants with transfemoral amputation. RESULTS In able-bodied participants, the results were consistent for all the measured parameters, and they indicated that both amplitude and spatial perception became worse during walking. More specifically, ST and DT increased significantly during walking vs. sitting (2.90 ± 0.82 mA vs. 2.00 ± 0.52 mA; p < 0.001 for ST and 7.74 ± 0.84 mA vs. 7.21 ± 1.30 mA; p < 0.05 for DT) and likewise for the JND (22.47 ± 12.21% vs. 11.82 ± 5.07%; p < 0.01), while the NDI became lower (6.46 ± 3.47 vs. 11.27 ± 5.18 intervals; p < 0.01). Regarding spatial perception, 2PD was higher during walking (69.78 ± 17.66 mm vs. 57.85 ± 14.87 mm; p < 0.001), while the performance of SD was significantly lower (56.70 ± 10.02% vs. 64.55 ± 9.44%; p < 0.01). For participants with lower-limb amputation, the ST, DT, and performance in the SD assessment followed the trends observed in the able-bodied population. The results for 2PD and JND were however different and subject-specific. CONCLUSION The conducted evaluation demonstrates that electrotactile feedback should be calibrated in the conditions in which it will be used (e.g., during walking). The calibration during sitting, while more convenient, might lead to an overly optimistic (or in some cases pessimistic) estimate of sensitivity. In addition, the results underline that calibration is particularly important in people affected by lower-limb loss to capture the substantial variability in the conditions of the residual limb and prosthesis setup. These insights are important for the implementation of artificial sensory feedback in lower-limb prosthetics applications.
Collapse
Affiliation(s)
- Romain Valette
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
Favre J, Cantaloube A, Jolles BM. Rehabilitation for Musculoskeletal Disorders: The Emergence of Serious Games and the Promise of Personalized Versions Using Artificial Intelligence. J Clin Med 2023; 12:5310. [PMID: 37629350 PMCID: PMC10455669 DOI: 10.3390/jcm12165310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
According to the World Health Organization (WHO), musculoskeletal conditions are among the most common health problems, affecting approximately 1 [...].
Collapse
Affiliation(s)
- Julien Favre
- Swiss BioMotion Lab, Lausanne University Hospital, University of Lausanne (CHUV-UNIL), CH-1011 Lausanne, Switzerland
- The Sense Innovation and Research Center, CH-1007 Lausanne, Switzerland
| | - Alexis Cantaloube
- Swiss BioMotion Lab, Lausanne University Hospital, University of Lausanne (CHUV-UNIL), CH-1011 Lausanne, Switzerland
| | - Brigitte M. Jolles
- Swiss BioMotion Lab, Lausanne University Hospital, University of Lausanne (CHUV-UNIL), CH-1011 Lausanne, Switzerland
- Institute of Electrical and Micro Engineering, Ecole Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Ng G, Gouda A, Andrysek J. Convolutional Neural Network for Estimating Spatiotemporal and Kinematic Gait Parameters using a Single Inertial Sensor . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083203 DOI: 10.1109/embc40787.2023.10340904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Lower limb disability severely impacts gait, thus requiring clinical interventions. Inertial sensor systems offer the potential for objective monitoring and assessment of gait in and out of the clinic. However, it is imperative such systems are capable of measuring important gait parameters while being minimally obtrusive (requiring few sensors). This work used convolutional neural networks to estimate a set of six spatiotemporal and kinematic gait parameters based on raw inertial sensor data. This differs from previous work which either was limited to spatiotemporal parameters or required conventional strap-down integration techniques to estimate kinematic parameters. Additionally, we investigated a data segmentation method which does not rely on gait event detection, further supporting its applicability in real-world settings.Preliminary results demonstrate our model achieved high accuracy on a mix of spatiotemporal and kinematic gait parameters, either meeting or exceeding benchmarks based on literature. We achieved 0.04 ± 0.03 mean absolute error for stance-time symmetry ratio and an absolute error of 4.78 ± 4.78, 4.50 ± 4.33, and 6.47 ± 7.37cm for right and left step length and stride length, respectively. Lastly, errors for knee and hip ranges of motion were 2.31 ± 4.20 and 1.73 ± 1.93°, respectively. The results suggest that machine learning can be a useful tool for long-term monitoring of gait using a single inertial sensor to estimate measures of gait quality.
Collapse
|
6
|
Prasanna S, D'Abbraccio J, Filosa M, Ferraro D, Cesini I, Spigler G, Aliperta A, Dell'Agnello F, Davalli A, Gruppioni E, Crea S, Vitiello N, Mazzoni A, Oddo CM. Uneven Terrain Recognition Using Neuromorphic Haptic Feedback. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094521. [PMID: 37177725 PMCID: PMC10181691 DOI: 10.3390/s23094521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot-ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue, a biomimetic vibrotactile feedback system that conveys information about gait and terrain features sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%, solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven terrains. The outcome suggested that the subjects achieved such performance with a temporal dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor conditions while walking, adapt their gait and promote a more confident use of their artificial limb.
Collapse
Affiliation(s)
- Sahana Prasanna
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Jessica D'Abbraccio
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Mariangela Filosa
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Interdisciplinary Research Center Health Science, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Davide Ferraro
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Ilaria Cesini
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Giacomo Spigler
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Andrea Aliperta
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Filippo Dell'Agnello
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Angelo Davalli
- Centro Protesi INAIL (Italian National Institute for Insurance against Accidents at Work), 40054 Budrio, Italy
| | - Emanuele Gruppioni
- Centro Protesi INAIL (Italian National Institute for Insurance against Accidents at Work), 40054 Budrio, Italy
| | - Simona Crea
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Interdisciplinary Research Center Health Science, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Interdisciplinary Research Center Health Science, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Calogero Maria Oddo
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
- Interdisciplinary Research Center Health Science, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
7
|
González AK, Rodríguez-Reséndiz J, Gonzalez-Durán JEE, Olivares Ramírez JM, Estévez-Bén AA. Development of a Hip Joint Socket by Finite-Element-Based Analysis for Mechanical Assessment. Bioengineering (Basel) 2023; 10:bioengineering10020268. [PMID: 36829762 PMCID: PMC9952638 DOI: 10.3390/bioengineering10020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
This article evaluates a hip joint socket design by finite element method (FEM). The study was based on the needs and characteristics of a patient with an oncological amputation; however, the solution and the presented method may be generalized for patients with similar conditions. The research aimed to solve a generalized problem, taking a typical case from the study area as a reference. Data were collected on the use of the current improving prosthesis-specifically in interaction with its socket-to obtain information on the new approach design: this step constituted the work's starting point, where the problems to be solved in conventional designs were revealed. Currently, the development of this type of support does not consider the functionality and comfort of the patient. Research has reported that 58% of patients with sockets have rejected their use, because they do not fit comfortably and functionally; therefore, patients' low acceptance or rejection of the use of the prosthesis socket has been documented. In this study, different designs were evaluated, based on the FEM as scientific support for the results obtained, for the development of a new ergonomic fit with a 60% increase in patient compliance, that had correct gait performance when correcting postures, improved fit-user interaction, and that presented an esthetic fit that met the usability factor. The validation of the results was carried out through the physical construction of the prototype. The research showed how the finite element method improved the design, analyzing the structural behavioral, and that it could reduce cost and time instead of generating several prototypes.
Collapse
Affiliation(s)
- Ana Karen González
- Engineering Faculty, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Juvenal Rodríguez-Reséndiz
- Engineering Faculty, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
- Correspondence: (J.R.-R.); (J.M.O.R.)
| | | | - Juan Manuel Olivares Ramírez
- Department of Renewable Energy, Universidad Tecnológica de San Juan del Río, Querétaro 76800, Mexico
- Correspondence: (J.R.-R.); (J.M.O.R.)
| | - Adyr A. Estévez-Bén
- Engineering Faculty, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
- Chemistry Faculty, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| |
Collapse
|
8
|
Ng G, Andrysek J. Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals. SENSORS (BASEL, SWITZERLAND) 2023; 23:1412. [PMID: 36772451 PMCID: PMC9921298 DOI: 10.3390/s23031412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Wearable sensors allow for the objective analysis of gait and motion both in and outside the clinical setting. However, it remains a challenge to apply such systems to highly diverse patient populations, including individuals with lower-limb amputations (LLA) that present with unique gait deviations and rehabilitation goals. This paper presents the development of a novel method using continuous gyroscope data from a single inertial sensor for person-specific classification of gait changes from a physiotherapist-led gait training session. Gyroscope data at the thigh were collected using a wearable gait analysis system for five LLA before, during, and after completing a gait training session. Data from able-bodied participants receiving no intervention were also collected. Models using dynamic time warping (DTW) and Euclidean distance in combination with the nearest neighbor classifier were applied to the gyroscope data to classify the pre- and post-training gait. The model achieved an accuracy of 98.65% ± 0.69 (Euclidean) and 98.98% ± 0.83 (DTW) on pre-training and 95.45% ± 6.20 (Euclidean) and 94.18% ± 5.77 (DTW) on post-training data across the participants whose gait changed significantly during their session. This study provides preliminary evidence that continuous angular velocity data from a single gyroscope could be used to assess changes in amputee gait. This supports future research and the development of wearable gait analysis and feedback systems that are adaptable to a broad range of mobility impairments.
Collapse
Affiliation(s)
- Gabriel Ng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
- Bloorview Research Institute (BRI), Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Jan Andrysek
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
- Bloorview Research Institute (BRI), Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| |
Collapse
|
9
|
Alfieri FM, da Silva Dias C, Utiyama DMO, Ayres DVM, Battistella LR. The Immediate Effect of Exercising in a Virtual Reality Treadmill (C-Mill) on Skin Temperature of a Man with Lower Limb Amputation. Case Rep Vasc Med 2023; 2023:7081000. [PMID: 39281416 PMCID: PMC11401695 DOI: 10.1155/2023/7081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 09/18/2024] Open
Abstract
Background In amputees, exercising can impact the distribution of body temperature. The aim of this case report is to verify the acute effect of exercising in C-Mill on the temperature distribution in the lower limbs of a man with unilateral transfemoral amputation. Materials and Methods The thigh and legs of a man with left distal transfemoral amputation were evaluated by thermography (infrared sensor FLIR T650sc) before and after a single 30-minute exercise session performed in a virtual reality treadmill device (C-Mill). Results The thermographic evaluation showed a difference in temperature between the thighs both before and after the intervention. However, there was a decrease in asymmetry, which went from 4.0°C to 3.1°C in the anterior view and from 5.3°C to 2.9°C in the posterior view, after the intervention. Conclusion Thermography allowed us to assess the difference in temperature in the lower limbs. Even though the temperature discrepancy has decreased after the single exercise session using the C-Mill, this difference persisted.
Collapse
Affiliation(s)
- Fábio Marcon Alfieri
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Master Course in Health Promotion-Adventist University of Sao Paulo (UNASP), Sao Paulo, Brazil
| | - Caren da Silva Dias
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniela Mitiyo Odagiri Utiyama
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Denise Vianna Machado Ayres
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
10
|
Development of a Digital Healthcare Management System for Lower-Extremity Amputees: A Pilot Study. Healthcare (Basel) 2022; 11:healthcare11010106. [PMID: 36611566 PMCID: PMC9819425 DOI: 10.3390/healthcare11010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The research, which was designed as a "pre- and post-single group" study, included patients with lower-limb amputation and aimed to evaluate the effectiveness of self-directed physical-strength training and cardiovascular exercise using a novel digital healthcare management service three times a week for 12 weeks. Muscle strength, thigh circumference, lipid profile and glycated hemoglobin levels, pulmonary function, quality of life, and physical activity level were evaluated before and after the intervention, while satisfaction was measured after the study. Among the 14 included patients, the proportion of adherence to the physical-strength training and physical-strengthening activity were 85.2% and 75.8%, respectively. The level of satisfaction with the digital healthcare management system was high. Significant changes were observed in the muscle-strength tests (dominant grip power and muscle strength of knee flexion and extension of the intact side), thigh circumference, and glycated hemoglobin levels. Further, the quality-of-life score showed improvement, although without significant differences. Individualized exercise management using the novel digital healthcare management system for lower-limb amputees could induce interest in self-care and promote physical activity and healthy behavior. Through this effect, we can expect a reduction in the incidence of cardiovascular diseases, diabetes mellitus, dyslipidemia, and severe injuries from falling.
Collapse
|
11
|
Fylstra BL, Lee IC, Li M, Lewek MD, Huang H. Human-prosthesis cooperation: combining adaptive prosthesis control with visual feedback guided gait. J Neuroeng Rehabil 2022; 19:140. [PMID: 36517814 PMCID: PMC9753428 DOI: 10.1186/s12984-022-01118-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Personalizing prosthesis control is often structured as human-in-the-loop optimization. However, gait performance is influenced by both human control and intelligent prosthesis control. Hence, we need to consider both human and prosthesis control, and their cooperation, to achieve desired gait patterns. In this study, we developed a novel paradigm that engages human gait control via user-fed visual feedback (FB) of stance time to cooperate with automatic prosthesis control tuning. Three initial questions were studied: (1) does user control of gait timing (via visual FB) help the prosthesis tuning algorithm to converge faster? (2) in turn, does the prosthesis control influence the user's ability to reach and maintain the target stance time defined by the feedback? and (3) does the prosthesis control parameters tuned with extended stance time on prosthesis side allow the user to maintain this potentially beneficial behavior even after feedback is removed (short- and long-term retention)? METHODS A reinforcement learning algorithm was used to achieve prosthesis control to meet normative knee kinematics in walking. A visual FB system cued the user to control prosthesis-side stance time to facilitate the prosthesis tuning goal. Seven individuals without amputation (AB) and four individuals with transfemoral amputation (TFA) walked with a powered knee prosthesis on a treadmill. Participants completed prosthesis auto-tuning with three visual feedback conditions: no FB, self-selected stance time FB (SS FB), and increased stance time FB (Inc FB). The retention of FB effects was studied by comparing the gait performance across three different prosthesis controls, tuned with different visual FB. RESULTS (1) Human control of gait timing reduced the tuning duration in individuals without amputation, but not for individuals with TFA. (2) The change of prosthesis control did not influence users' ability to reach and maintain the visual FB goal. (3) All participants increased their prosthesis-side stance time with the feedback and maintain it right after feedback was removed. However, in the post-test, the prosthesis control parameters tuned with visual FB only supported a few participants with longer stance time and better stance time symmetry. CONCLUSIONS The study provides novel insights on human-prosthesis interaction when cooperating in walking, which may guide the future successful adoption of this paradigm in prosthesis control personalization or human-in-the-loop optimization to improve the prosthesis user's gait performance.
Collapse
Affiliation(s)
- Bretta L. Fylstra
- grid.40803.3f0000 0001 2173 6074Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 USA ,grid.10698.360000000122483208Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - I-Chieh Lee
- grid.40803.3f0000 0001 2173 6074Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 USA ,grid.10698.360000000122483208Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Minhan Li
- grid.40803.3f0000 0001 2173 6074Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 USA ,grid.10698.360000000122483208Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Michael D. Lewek
- grid.10698.360000000122483208Division of Physical Therapy, UNC Chapel Hill, Chapel Hill, NC 27599 USA
| | - He Huang
- grid.40803.3f0000 0001 2173 6074Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 USA ,grid.10698.360000000122483208Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
12
|
Gouda A, Andrysek J. Rules-Based Real-Time Gait Event Detection Algorithm for Lower-Limb Prosthesis Users during Level-Ground and Ramp Walking. SENSORS (BASEL, SWITZERLAND) 2022; 22:8888. [PMID: 36433483 PMCID: PMC9693475 DOI: 10.3390/s22228888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Real-time gait event detection (GED) using inertial sensors is important for applications such as remote gait assessments, intelligent assistive devices including microprocessor-based prostheses or exoskeletons, and gait training systems. GED algorithms using acceleration and/or angular velocity signals achieve reasonable performance; however, most are not suited for real-time applications involving clinical populations walking in free-living environments. The aim of this study was to develop and evaluate a real-time rules-based GED algorithm with low latency and high accuracy and sensitivity across different walking states and participant groups. The algorithm was evaluated using gait data collected from seven able-bodied (AB) and seven lower-limb prosthesis user (LLPU) participants for three walking states (level-ground walking (LGW), ramp ascent (RA), ramp descent (RD)). The performance (sensitivity and temporal error) was compared to a validated motion capture system. The overall sensitivity was 98.87% for AB and 97.05% and 93.51% for LLPU intact and prosthetic sides, respectively, across all walking states (LGW, RA, RD). The overall temporal error (in milliseconds) for both FS and FO was 10 (0, 20) for AB and 10 (0, 25) and 10 (0, 20) for the LLPU intact and prosthetic sides, respectively, across all walking states. Finally, the overall error (as a percentage of gait cycle) was 0.96 (0, 1.92) for AB and 0.83 (0, 2.08) and 0.83 (0, 1.66) for the LLPU intact and prosthetic sides, respectively, across all walking states. Compared to other studies and algorithms, the herein-developed algorithm concurrently achieves high sensitivity and low temporal error with near real-time detection of gait in both typical and clinical populations walking over a variety of terrains.
Collapse
Affiliation(s)
- Aliaa Gouda
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Jan Andrysek
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| |
Collapse
|
13
|
Canton Leal JM, Gyllinsky JV, Arredondo Zamudio AA, Mankodiya K. HapticLink: A Force-based Haptic Feedback System for Single and Double Lower-Limb Amputees. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4226-4229. [PMID: 36086048 DOI: 10.1109/embc48229.2022.9871460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lower limb amputation affects an estimated 1.71 million people in the US. The lack of sensory feedback and proprioception often causes loss of balance which heightens the risk of falls and injury. In this presented paper, a haptic feedback system named HapticLink was developed based on the weight distribution of the prosthetic foot to increase the individual's balance and the self-attribution of the prosthesis. The repeatability and linearity of four different force sensors were tested. The FlexiForce A201 sensors were identified as the optimal choice for the parameters and scenarios investigated. HapticLink consists of four A201 sensors, a microcontroller, and four Vibration Motors (VM). The developed system can determine and convey weight distribution on a prosthetic foot to the wearer as haptic feedback. Initial tests with Lower-Limb Prosthetic (LLP) users were conducted with quantitative results (Directional, Frequency, and Manually Applied Directional Perception tests avg. 94.44%, 79.17%, and 100%) and responses from the participants indicating that HapticLink may aid during single or double lower-limb amputee ambulation after establishing haptic feedback intensity comfort. Finally, the successful qualitative tests with a double lower-limb amputee imply the haptic feedback may be sufficient without requiring sensor fusion on the part of the participant from both the VMs and the proprioception of the contralateral leg. Clinical Relevance--- This establishes the utility of a simple, stand-alone 4:4 force sensor and haptic motor feedback system to aid during single or double lower-limb amputee ambulation.
Collapse
|
14
|
Michelini A, Sivasambu H, Andrysek J. The Short-Term Effects of Rhythmic Vibrotactile and Auditory Biofeedback on the Gait of Individuals After Weight-Induced Asymmetry. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2022; 5:36223. [PMID: 37614474 PMCID: PMC10443516 DOI: 10.33137/cpoj.v5i1.36223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 01/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Biofeedback (BFB), the practice of providing real-time sensory feedback has been shown to improve gait rehabilitation outcomes. BFB training through rhythmic stimulation has the potential to improve spatiotemporal gait asymmetries while minimizing cognitive load by encouraging a synchronization between the user's gait cycle and an external rhythm. OBJECTIVE The purpose of this work was to evaluate if rhythmic stimulation can improve the stance time symmetry ratio (STSR) and to compare vibrotactile to auditory stimulation. Gait parameters including velocity, cadence, stride length, double support time, and step length symmetry, were also examined. METHODOLOGY An experimental rhythmic stimulation system was developed, and twelve healthy adults (5 males), age 28.42 ± 10.93 years, were recruited to participate in walking trials. A unilateral ankle weight was used to induce a gait asymmetry to simulate asymmetry as commonly exhibited by individuals with lower limb amputation and other clinical disorders. Four conditions were evaluated: 1) No ankle weight baseline, 2) ankle weight without rhythmic stimulation, 3) ankle weight + rhythmic vibrotactile stimulation (RVS) using alternating motors and 4) ankle weight + rhythmic auditory stimulation (RAS) using a singletone metronome at the participant's self-selected cadence. FINDINGS As expected the STSR became significantly more asymmetrical with the ankle weight (i.e. induced asymmetry condition). STSR improved significantly with RVS and RAS when compared to the ankle weight without rhythmic stimulation. Cadence also significantly improved with RVS and RAS compared to ankle weight without rhythmic stimulation. With the exception of double support time, the other gait parameters were unchanged from the ankle weight condition. There were no statistically significant differences between RVS and RAS. CONCLUSION This study found that rhythmic stimulation can improve the STSR when an asymmetry is induced. Moreover, RVS is at least as effective as auditory stimulation in improving STSR in healthy adults with an induced gait asymmetry. Future work should be extended to populations with mobility impairments and outside of laboratory settings.
Collapse
Affiliation(s)
- A. Michelini
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - H. Sivasambu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - J. Andrysek
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| |
Collapse
|
15
|
Hadj-Moussa F, Ngan CC, Andrysek J. Biomechanical factors affecting individuals with lower limb amputations running using running-specific prostheses: A systematic review. Gait Posture 2022; 92:83-95. [PMID: 34837772 DOI: 10.1016/j.gaitpost.2021.10.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Running-specific prostheses (RSPs) are biomechanically designed to enable individuals with lower limb amputations to engage in high level sports. RESEARCH QUESTION What is the influence of RSP use on the running biomechanics of individuals with lower limb amputations? METHODS An article search was conducted in six databases since their inception to July 2021. Two independent reviewers assessed the title, abstract and full texts in the review process. The quality of the papers was appraised. The review included a total of 35 articles. RESULTS Main findings indicate force production is a limitation of RSPs. Individuals with lower limb absence employ a variety of compensatory strategies such as adjusting their step frequency, contact length and joint kinetics to improve their running performance. Leg stiffness modulation and external factors relating to the RSP design and fitting play important roles in RSP biomechanics. For individuals with unilateral amputations, the increased loading of the intact limb could increase the risk of acute injury or chronic joint degradation. SIGNIFICANCE To improve their running performance, runners with lower limb amputations employ various compensatory strategies, such as altering the spatiotemporal and kinetic parameters. Factors relating to RSP height, stiffness, shape, and alignment also play an important role in terms of running biomechanics and should be considered in RSP design and fitting. Future studies should focus on the use of RSPs for recreation, in pediatric populations, with certain amputation levels, as well as the impact of training and running techniques.
Collapse
Affiliation(s)
- Firdous Hadj-Moussa
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Calvin C Ngan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Jan Andrysek
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada.
| |
Collapse
|
16
|
Idrobo-Ávila E, Loaiza-Correa H, Muñoz-Bolaños F, van Noorden L, Vargas-Cañas R. Development of a biofeedback system using harmonic musical intervals to control heart rate variability with a generative adversarial network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Motahari-Nezhad H, Fgaier M, Mahdi Abid M, Péntek M, Gulácsi L, Zrubka Z. Scoping review of systematic reviews of digital biomarker-based studies (Preprint). JMIR Mhealth Uhealth 2021; 10:e35722. [DOI: 10.2196/35722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
|
18
|
A Visual Feedback Tool for Quantitative Pressure Monitoring in Lower-Limb Prosthetic Sockets. PROSTHESIS 2021. [DOI: 10.3390/prosthesis3040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obtaining a good socket fit is an iterative process dependent on the skill and experience of the prosthetist creating it and requires individualisation based on the size and shape. There is no standard measurement system used to aid prosthetic socket creation despite the severe impacts on physical health and quality of life if one is ill fitting. Pressure sensors embedded in a prosthetic socket were used to collect data at the socket–residuum interface. To choose an interpolation method, the sensor array was simplified to a 2D grid with a border for extrapolation and tested using previously collected walking test pressure data. Four multivariable interpolation methods were evaluated to create a colour map of the pressure data. Radial basis function interpolation was chosen, as it produced a clear image with a graduated interpolation between data points, and was used to create a colour map across the surface of a 3D prosthetic socket model. For the model to be accessible to clinical audiences, a desktop application was created using PyQt to view the model. The application allowed for connection to the sensors via Bluetooth, with the pressure data updating on the 3D model in real time. Clinician feedback on the application showed the potential for a clinical product; however, further development informed by feedback from rehabilitation clinicians and prosthesis users is required.
Collapse
|
19
|
Chen L, Feng Y, Chen B, Wang Q, Wei K. Improving postural stability among people with lower-limb amputations by tactile sensory substitution. J Neuroeng Rehabil 2021; 18:159. [PMID: 34742292 PMCID: PMC8572471 DOI: 10.1186/s12984-021-00952-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023] Open
Abstract
Background For people with lower-limb amputations, wearing a prosthetic limb helps restore their motor abilities for daily activities. However, the prosthesis's potential benefits are hindered by limited somatosensory feedback from the affected limb and its prosthesis. Previous studies have examined various sensory substitution systems to alleviate this problem; the prominent approach is to convert foot–ground interaction to tactile stimulations. However, positive outcomes for improving their postural stability are still rare. We hypothesized that the sensory substiution system based on surrogated tactile stimulus is capable of improving the standing stability among people with lower-limb amputations. Methods We designed a wearable device consisting of four pressure sensors and two vibrators and tested it among people with unilateral transtibial amputations (n = 7) and non-disabled participants (n = 8). The real-time measurements of foot pressure were fused into a single representation of foot–ground interaction force, which was encoded by varying vibration intensity of the two vibrators attached to the participants’ forearm. The vibration intensity followed a logarithmic function of the force representation, in keeping with principles of tactile psychophysics. The participants were tested with a classical postural stability task in which visual disturbances perturbed their quiet standing. Results With a brief familiarization of the system, the participants exhibited better postural stability against visual disturbances when switching on sensory substitution than without. The body sway was substantially reduced, as shown in head movements and excursions of the center of pressure. The improvement was present for both groups of participants and was particularly pronounced in more challenging conditions with larger visual disturbances. Conclusions Substituting otherwise missing foot pressure feedback with vibrotactile signals can improve postural stability for people with lower-limb amputations. The design of the mapping between the foot–ground interaction force and the tactile signals is essential for the user to utilize the surrogated tactile signals for postural control, especially for situations that their postural control is challenged.
Collapse
Affiliation(s)
- Lijun Chen
- School of Psychological and Cognitive Sciences, Peking University, 5 Yiheyuan Road, 100871, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Beijing, China
| | - Yanggang Feng
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
| | - Baojun Chen
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
| | - Qining Wang
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
| | - Kunlin Wei
- School of Psychological and Cognitive Sciences, Peking University, 5 Yiheyuan Road, 100871, Beijing, China. .,Beijing Key Laboratory of Behavior and Mental Health, Beijing, China. .,Key Laboratory of Machine Perception, Ministry of Education, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
20
|
Escamilla-Nunez R, Sivasambu H, Andrysek J. Exploration of Vibrotactile Biofeedback Strategies to Induce Stance Time Asymmetries. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2021; 5:36744. [PMID: 37614481 PMCID: PMC10443477 DOI: 10.33137/cpoj.v5i1.36744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gait symmetry is the degree of equality of biomechanical parameters between limbs within a gait cycle. Human gait is highly symmetrical; however, in the presence of pathology, gait often lacks symmetry. Biofeedback (BFB) systems have demonstrated the potential to reduce gait asymmetry, improve gait function, and benefit overall long-term musculoskeletal health. OBJECTIVES The aim of this study was to develop a BFB system and evaluate three unique BFB strategies, including bidirectional control - constant vibration (BC), bidirectional control - variable vibration (BV), and unidirectional control - variable vibration (UV) relevant to gait symmetry. The assessed feedback strategies were a combination of vibration frequency/amplitude levels, vibration thresholds, and vibrotactile stimuli from one and two vibrating motors (tactors). Learning effect and short-term retention were also assessed. METHODOLOGY Testing was performed using a custom BFB system that induces stance time asymmetries to modulate temporal gait symmetry. The BFB system continuously monitors specific gait events (heel-strike and toe-off) and calculates the symmetry ratio, based on the stance time of both limbs to provide real-time biomechanical information via the vibrating motors. Overall walking performance of ten (n=10) able-bodied individuals (age 24.8 ± 4.4 years) was assessed via metrics of symmetry ratio, symmetry ratio error, walking speed, and motor's vibration percentages. FINDINGS All participants utilized BFB somatosensory information to modulate their symmetry ratio. UV feedback produced a greater change in symmetry ratio, and it came closer to the targeted symmetry ratio. Learning or short-term retention effects were minimal. Walking speeds were reduced with feedback compared to no feedback; however, UV walking speeds were significantly faster compared to BV and BC. CONCLUSION The outcomes of this study provide new insights into the development and implementation of feedback strategies for gait retraining BFB systems that may ultimately benefit individuals with pathological gait. Future work should assess longer-term use and long-term learning and retention effects of BFB systems in the populations of interest.
Collapse
Affiliation(s)
- R Escamilla-Nunez
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - H Sivasambu
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - J Andrysek
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| |
Collapse
|
21
|
Zhang Z. RESEARCH ON KINECT BASED TRAINING SYSTEM FOR SPORTS OBSTACLE ASSESSMENT. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127042021_0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective: The study draws attention to designing a dyskinesia assessment system using a Kinect sensor to improve the efficiency of rehabilitation training. Methods: The login page design. Step 2: System functions setting. Relevant movement guidance content and rehabilitation evaluation content are incorporated in the system to make rehabilitation training efficient and orderly. Comprehensive data processing, evaluation, and export functions are necessary to reference rehabilitation physicians in diagnosis and treatment. Step 3: System modules design. Based on the system settings, corresponding functional modules have been designed and developed. With each module realizing its specific functions, it must be ensured that there is a certain degree of correlation between the modules. Step 4: The system function framework design. Results: A simple and comfortable login page is designed; 2. The system is capable of rehabilitation training and data management; 3. Specifically designed modules include sports collection module, rehabilitation training module, rehabilitation evaluation module, and information management module; 4. After logging in, the patient should first search for the rehabilitation plan in the rehabilitation training function module and then perform rehabilitation training regarding the rehabilitation plan. Kinect synchronously obtains patient sports information throughout the training process, and patients can obtain rehabilitation assessment information and automatically save it in the information management module. Conclusions: The Kinect-based dyskinesia assessment and training system designed in this study can heighten the efficiency of rehabilitation training for patients with dyskinesia, and it is highly suggested in clinical practice. Level of evidence II; Therapeutic studies - investigation of treatment results.
Collapse
|
22
|
Pangan AM, Leineweber M. Footwear and Elevated Heel Influence on Barbell Back Squat: A Review. J Biomech Eng 2021; 143:090801. [PMID: 33844006 DOI: 10.1115/1.4050820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 11/08/2022]
Abstract
The back squat is one of the most effective exercises in strengthening the muscles of the lower extremity. Understanding the impact of footwear has on the biomechanics is imperative for maximizing the exercise training potential, preventing injury, and rehabilitating from injury. This review focuses on how different types of footwear affect the full-body kinematics, joint loads, muscle activity, and ground reaction forces in athletes of varying experience performing the weighted back squat. The literature search was conducted using three databases, and fourteen full-text articles were ultimately included in the review. The majority of these studies demonstrated that the choice of footwear directly impacts kinematics and kinetics. Weightlifting shoes were shown to decrease trunk lean and generate more plantarflexion relative to running shoes and barefoot lifting. Elevating the heel through the use of external squat wedges is popular method during rehabilitation and was shown to provide similar effects to weightlifting shoes. Additional research with a broader array of populations, particularly novice and female weightlifters, should be conducted to generalize the research results to nonathlete populations. Further work is also needed to characterize the specific effects of sole stiffness and heel elevation height on squatting mechanics.
Collapse
Affiliation(s)
- Aaron Michael Pangan
- Biomedical Engineering Department, San José State University, One Washington Square, San Jose, CA 95192-0278
| | - Matthew Leineweber
- Biomedical Engineering Department, San José State University, One Washington Square, San Jose, CA 95192-0278
| |
Collapse
|
23
|
Tiwari A, Joshi D. Design and Validation of a Real-Time Visual Feedback System to Improve Minimum Toe Clearance (mTC) in Transfemoral Amputees. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1711-1722. [PMID: 34398756 DOI: 10.1109/tnsre.2021.3105139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tripping is accompanied by reduced minimum toe clearance (mTC) during the swing phase of gait. The risk of fall due to tripping among transfemoral amputees is nearly 67% which is greater than the transtibial amputees. Therefore, intervention to improve mTC can potentially enhance the quality of life among transfemoral amputees. In this paper, we first develop a real-time visual feedback system with center of pressure (CoP) information. Next, we recruited six non-disabled and three transfemoral amputees to investigate the effect on mTC while participants were trained to shift the CoP anteriorly/posteriorly during heel strike. Finally, to assess the lasting effect of training on mTC, retention trials were conducted without feedback. During feedback, posterior shift in the CoP improved the mTC significantly from 4.68 ± 0.40 cm to 6.12 ± 0.68 cm (p < 0.025) in non-disabled participants. A similar significant improvement in mTC from 4.60 ± 0.55 cm to 5.62 ± 0.57 cm was observed in amputees during posterior shift of CoP. Besides mTC, maximal toe clearances, i.e., maxTC1 and maxTC2, also showed a significant increase (p < 0.025) during the posterior shift of CoP in both the participants. Moreover, during retention, mTC did not differ significantly (p > 0.05) from feedback condition in amputee, suggesting a positive effect of feedback training. The foot-to-ground angle (FGA) at mTC increased significantly (p < 0.025) during posterior shift feedback in non-disabled suggests active ankle dorsiflexion in increasing mTC. However, in amputees, FGA at mTC did not differ significantly during both anterior and posterior CoP shift feedback. The present findings suggest CoP feedback as a potential strategy during gait rehabilitation of transfemoral amputees.
Collapse
|
24
|
Potential and Limitations of Feedback-Supported Gait Retraining in Users of Lower Limb Prostheses. PROSTHESIS 2021. [DOI: 10.3390/prosthesis3020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The outcomes of prosthetic rehabilitation after lower limb loss are, in large part, affected by the effectiveness of the provided gait retraining. The noted prevalence of adverse long-term effects, such as further joint and muscle degeneration, suggests that traditional rehabilitation programs have limitations. Recent advances in technology and in the understanding of motor learning promise the potential for better gait retraining interventions. This article reviews current literature on systems and methodologies of improving gait parameters in those with lower limb prostheses via exercise programs and various biofeedback systems. A total of 13 articles were included in the qualitative analysis. Findings indicate that many of the investigated systems are able to effectively analyze and change gait in the target population, but there remain considerable gaps in the knowledge. It has been noted that feedback modalities and dosage must be customized based on patient characteristics and rehabilitation goals, yet there is currently not enough published evidence to inform such customization.
Collapse
|
25
|
Reh J, Schmitz G, Hwang TH, Effenberg AO. Acoustic Feedback in Gait Rehabilitation-Pre-Post Effects in Patients With Unilateral Hip Arthroplasty. Front Sports Act Living 2021; 3:654546. [PMID: 34027404 PMCID: PMC8138186 DOI: 10.3389/fspor.2021.654546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
It is known that patients after unilateral hip arthroplasty still suffer from a deficient gait pattern compared to healthy individuals one year after surgery. Through the method of gait sonification, it may be possible to achieve a more efficient training and a more physiological gait pattern. Increased loads on the musculoskeletal system could thus be reduced and rehabilitation times shortened. In a previous investigation with this patient group, we found immediate gait pattern changes during training with dual mode acoustic feedback [real-time feedback (RTF) and instructive model sequences (IMS)]. To determine whether an effect persists without the immediate use of acoustic feedback, we analyze data from four times of testing. Following unilateral hip arthroplasty 22 patients participated in an intervention of ten gait training sessions of 20 min each. During gait training the sonification group (SG) (n = 11) received an acoustic feedback consisting of RTF and IMS compared to a control group (CG) (n = 11). Pre-test, intermediate test, post-test, and re-test were conducted using an inertial sensor-based motion analysis system. We found significant effects (α = 0.05) regarding step length and range of motion (RoM) of the hip joint. Step length of the affected leg increased in the SG from intermediate test to post-test but decreased in the CG [intermediate test: (SG) 0.63 m ± 0.12 m, (CG) 0.63 m ± 0.09 m; post-test: (SG) 0.66 m ± 0.11 m, (CG) 0.60 m ± 0.09 m]. However, from the post-test to the re-test a reverse development was observed [re-test: (SG) 0.63 m ± 0.10 m, (CG) 0.65 m ± 0.09 m]. Also, from post-test to re-test a decrease in the RoM of the unaffected hip for the SG but an increase for the CG could be observed [post-test: (SG) 44.10° ± 7.86°, (CG) 37.05° ± 7.21°; re-test: (SG) 41.73° ± 7.38°, (CG) 40.85° ± 9.28°]. Regarding further parameters, significant interactions in step duration as well as increases in stride length, gait speed, cadence, and a decrease in ground contact time from pre-test to re-test were observed for both groups. Clinical Trial Registration: https://www.drks.de/drks_web/, identifier DRKS00022570.
Collapse
Affiliation(s)
- Julia Reh
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Gerd Schmitz
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Tong-Hun Hwang
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Alfred O Effenberg
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
26
|
Escamilla-Nunez R, Michelini A, Andrysek J. A Wearable Vibrotactile Biofeedback System Targeting Gait Symmetry of Lower-limb Prosthetic Users. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3281-3284. [PMID: 33018705 DOI: 10.1109/embc44109.2020.9176666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lower limb prosthetic users exhibit gait deviations, which include asymmetrical stance time (ST), leading to secondary musculoskeletal problems. Biofeedback (BFB) systems have the potential to provide gait training to correct gait deviations. In this work, we describe a wearable BFB system that delivers vibrotactile feedback via two tactors (located at the anterior and posterior side of the residual limb of prosthetic users) to correct asymmetrical ST (%) using two strategies - single threshold feedback (SF) and bandwidth threshold feedback (BF). Validation of the system involved a sample of five lower limb amputees to examine the effectiveness of each strategy when compared to no feedback (NF) gait trials. Significant differences were found between no feedback and feedback trials. Although no significant differences were found between SF and BF, there are small but evident trends indicating that BF encourages ST (%) that is closest to the target with less error.
Collapse
|
27
|
Agostini V, Ghislieri M, Rosati S, Balestra G, Knaflitz M. Surface Electromyography Applied to Gait Analysis: How to Improve Its Impact in Clinics? Front Neurol 2020; 11:994. [PMID: 33013656 PMCID: PMC7502709 DOI: 10.3389/fneur.2020.00994] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Surface electromyography (sEMG) is the main non-invasive tool used to record the electrical activity of muscles during dynamic tasks. In clinical gait analysis, a number of techniques have been developed to obtain and interpret the muscle activation patterns of patients showing altered locomotion. However, the body of knowledge described in these studies is very seldom translated into routine clinical practice. The aim of this work is to analyze critically the key factors limiting the extensive use of these powerful techniques among clinicians. A thorough understanding of these limiting factors will provide an important opportunity to overcome limitations through specific actions, and advance toward an evidence-based approach to rehabilitation based on objective findings and measurements.
Collapse
Affiliation(s)
- Valentina Agostini
- PoliToBIOMedLab, Politecnico di Torino, Turin, Italy.,Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Marco Ghislieri
- PoliToBIOMedLab, Politecnico di Torino, Turin, Italy.,Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Samanta Rosati
- PoliToBIOMedLab, Politecnico di Torino, Turin, Italy.,Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Gabriella Balestra
- PoliToBIOMedLab, Politecnico di Torino, Turin, Italy.,Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Marco Knaflitz
- PoliToBIOMedLab, Politecnico di Torino, Turin, Italy.,Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| |
Collapse
|