1
|
Qi H, Luo J, Wu X, Zhang C. Application of nondestructive techniques for peach (Prunus persica) quality inspection: A review. J Food Sci 2024. [PMID: 39366769 DOI: 10.1111/1750-3841.17388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
Peaches are highly valued for their rich nutritional content. Traditional fruit quality accessing methods (i.e., manual squeezing the fruit for firmness) are both subjective and destructive, which tend to diminish the integrity of fruit samples, consequently undermining their market value. Compared to traditional detection methods, nondestructive technology offers efficient and noninvasive solutions for rapidly and accurately assessing internal external quality of peaches. This can significantly enhance product classification and quality assurance while reducing the need for extensive human resources and minimizing potential physical damage to peaches. This review provided a comprehensive overview of nondestructive techniques for peach quality evaluation, including visible/near-infrared spectroscopy, machine vision technology, hyperspectral imaging, dielectric and optical properties, fluorescence spectroscopy, electronic nose/tongue, and acoustic vibration methods. It also evaluates the effectiveness of each technique in assessing internal quality, maturity, and disease detection of peaches. The advantages and limitations of each method were also summarized. This study focuses specifically on peaches and encompasses all existing nondestructive testing methods, providing valuable insights and references for future studies in the field of peach quality analysis using nondestructive testing methods.
Collapse
Affiliation(s)
- Hengnian Qi
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Jiahao Luo
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Xiaoping Wu
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
2
|
Franzoni G, Spadafora ND, Sirangelo TM, Ferrante A, Rogers HJ. Biochemical and molecular changes in peach fruit exposed to cold stress conditions. MOLECULAR HORTICULTURE 2023; 3:24. [PMID: 37953307 PMCID: PMC10641970 DOI: 10.1186/s43897-023-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Storage or transportation temperature is very important for preserving the quality of fruit. However, low temperature in sensitive fruit such as peach can induce loss of quality. Fruit exposed to a specific range of temperatures and for a longer period can show chilling injury (CI) symptoms. The susceptibility to CI at low temperature varies among cultivars and genetic backgrounds. Along with agronomic management, appropriate postharvest management can limit quality losses. The importance of correct temperature management during postharvest handling has been widely demonstrated. Nowadays, due to long-distance markets and complex logistics that require multiple actors, the management of storage/transportation conditions is crucial for the quality of products reaching the consumer.Peach fruit exposed to low temperatures activate a suite of physiological, metabolomic, and molecular changes that attempt to counteract the negative effects of chilling stress. In this review an overview of the factors involved, and plant responses is presented and critically discussed. Physiological disorders associated with CI generally only appear after the storage/transportation, hence early detection methods are needed to monitor quality and detect internal changes which will lead to CI development. CI detection tools are assessed: they need to be easy to use, and preferably non-destructive to avoid loss of products.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123, Rome, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
3
|
Liu Z, Wang M, Wu M, Li X, Liu H, Niu N, Li S, Chen L. Volatile organic compounds (VOCs) from plants: From release to detection. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Effect of Fermentation Strategy on the Quality and Aroma Characteristics of Yellow Peach Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To obtain high-quality yellow peach wines of varying characteristics, different fermentation strategies, including various pre-fermentative treatments, were applied. This study aimed to determine the effect of different fermentation strategies on the physicochemical properties, monomer phenol content, in vitro antioxidant activity, and volatile compounds of yellow peach wine. The results showed that peach wine P12, fermented with pulp, had higher total phenolic content (TPC), total flavonoid content (TFC), monomer phenol and volatile compound content, and antioxidant activity. Ten monomeric phenols were detected in peach wines, and the content of catechin was the highest. Juice fermentation wine, J12, had a strong floral aroma, and some volatile compounds were released during fermentation when water was added to the pulp, and low alcohol content did not reduce the variety of volatile compounds. The main aroma and common characteristics of the fermented yellow peach wine were dominated by esters, with a relative odor activity value (ROAV) ≥ 1, namely, isoamyl acetate, ethyl hexanoate, and ethyl octanoate. Our results demonstrated that the application of the described fermentation strategies significantly affected the quality and volatile compound content of yellow peach wines. This might assist in the development of a highly diverse yellow peach wine flavor.
Collapse
|
5
|
Lin Y, Ma J, Wang Q, Sun DW. Applications of machine learning techniques for enhancing nondestructive food quality and safety detection. Crit Rev Food Sci Nutr 2022; 63:1649-1669. [PMID: 36222697 DOI: 10.1080/10408398.2022.2131725] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In considering the need of people all over the world for high-quality food, there has been a recent increase in interest in the role of nondestructive and rapid detection technologies in the food industry. Moreover, the analysis of data acquired by most nondestructive technologies is complex, time-consuming, and requires highly skilled operators. Meanwhile, the general applicability of various chemometric or statistical methods is affected by noise, sample, variability, and data complexity that vary under various testing conditions. Nowadays, machine learning (ML) techniques have a wide range of applications in the food industry, especially in nondestructive technology and equipment intelligence, due to their powerful ability in handling irrelevant information, extracting feature variables, and building calibration models. The review provides an introduction and comparison of machine learning techniques, and summarizes these algorithms as traditional machine learning (TML), and deep learning (DL). Moreover, several novel nondestructive technologies, namely acoustic analysis, machine vision (MV), electronic nose (E-nose), and spectral imaging, combined with different advanced ML techniques and their applications in food quality assessment such as variety identification and classification, safety inspection and processing control, are presented. In addition to this, the existing challenges and prospects are discussed. The result of this review indicates that nondestructive testing technologies combined with state-of-the-art machine learning techniques show great potential for monitoring the quality and safety of food products and different machine learning algorithms have their characteristics and applicability scenarios. Due to the nature of feature learning, DL is one of the most promising and powerful techniques for real-time applications, which needs further research for full and wide applications in the food industry.
Collapse
Affiliation(s)
- Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
| | - Qijun Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
6
|
Zhang T, Li D, Zhu X, Zhang M, Guo J, Chen J. Nano-Al 2O 3 particles affect gut microbiome and resistome in an in vitro simulator of the human colon microbial ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129513. [PMID: 35870212 DOI: 10.1016/j.jhazmat.2022.129513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Nano-Al2O3 has been widely used in various consumer products and water treatment processes because of its unique physicochemical properties. The probability of human exposure to nano-Al2O3 increases significantly, of which oral ingestion is an important route. However, effects and underlying mechanisms of nano-Al2O3 on gut microbiota and resistome are still not well delineated. Here, we systematically investigated the effects of nano-Al2O3 on the human gut microbiome by an in vitro simulator of human colon microbial ecosystem. Results indicated that nano-Al2O3 interfered with the gut microbiota, and significantly suppressed the short-chain fatty acids metabolism, which might pose adverse effects on the host. More seriously, high level of nano-Al2O3 (50 mg/L) was more destructive to the gut flora, though the damage might be temporary. In addition, sub-inhibitory low-dose of nano-Al2O3 (0.1 mg/L) significantly enhanced the abundance of antibiotic resistance genes (ARGs) after 7-day exposure. This is attributed to that low concentration of nano-Al2O3 can promote horizontal transfer of ARGs by increasing cell membrane permeability and relative abundance of transposase (e.g. tnpA, IS613, and Tp614). Our findings confirmed the adverse effects of nano-Al2O3 on the human gut resistome and emphasized the necessity to assess potential risks of nanomaterials on the human gut health.
Collapse
Affiliation(s)
- Tingting Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Academy of Environmental Planning & Design, Co., Ltd. Nanjing University, Nanjing 210093, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xuan Zhu
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control,Beijing Technology and Business University, Beijing 100048, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Zhao C, Ma J, Jia W, Wang H, Tian H, Wang J, Zhou W. An Apple Fungal Infection Detection Model Based on BPNN Optimized by Sparrow Search Algorithm. BIOSENSORS 2022; 12:bios12090692. [PMID: 36140077 PMCID: PMC9496132 DOI: 10.3390/bios12090692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
To rapidly detect whether apples are infected by fungi, a portable electronic nose was used in this study to collect the gas information from apples, and the collected information was processed by smoothing filtering, data dimensionality reduction, and outlier removal. Following this, we utilized K-nearest neighbors (KNN), random forest (RF), support vector machine (SVM), a convolutional neural network (CNN), a back-propagation neural network (BPNN), a particle swarm optimization–back-propagation neural network (PSO-BPNN), a gray wolf optimization–backward propagation neural network (GWO-BPNN), and a sparrow search algorithm–backward propagation neural network (SSA-BPNN) model to discriminate apple samples, and adopted the 10-fold cross-validation method to evaluate the performance of each model. The results show that SSA can effectively optimize the performance of the BPNN, such that the recognition accuracy of the optimized SSA-BPNN model reaches 98.40%. This study provides an important reference value for the application of an electronic nose in the non-destructive and rapid detection of fungal infection in apples.
Collapse
Affiliation(s)
- Changtong Zhao
- Mechanical Electrical Engineering School, Beijing Information Science and Technology University, Beijing 100192, China
| | - Jie Ma
- Mechanical Electrical Engineering School, Beijing Information Science and Technology University, Beijing 100192, China
| | - Wenshen Jia
- Mechanical Electrical Engineering School, Beijing Information Science and Technology University, Beijing 100192, China
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: ; Tel.: +86-13521217121
| | - Huihua Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102206, China
| | - Hui Tian
- Mechanical Electrical Engineering School, Beijing Information Science and Technology University, Beijing 100192, China
| | - Jihua Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhou
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| |
Collapse
|
8
|
Huang Y, Zhang P, Liu W, Zhang Q, Li G, Shan Y, Zhu X. Understanding the volatile organic compounds of 1‐methylcyclopropylene fumigation and packaging on yellow‐fleshed peach via headspace‐gas chromatography‐ion mobility spectrometry and chemometric analyses. J Food Sci 2022; 87:4009-4026. [DOI: 10.1111/1750-3841.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Yunian Huang
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Pei Zhang
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Wei Liu
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Qun Zhang
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Gaoyang Li
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Yang Shan
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| | - Xiangrong Zhu
- Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Longping Branch Graduate School Hunan University Changsha China
| |
Collapse
|
9
|
Lin M, Fawole OA, Saeys W, Wu D, Wang J, Opara UL, Nicolai B, Chen K. Mechanical damages and packaging methods along the fresh fruit supply chain: A review. Crit Rev Food Sci Nutr 2022; 63:10283-10302. [PMID: 35647708 DOI: 10.1080/10408398.2022.2078783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mechanical damage of fresh fruit occurs throughout the postharvest supply chain leading to poor consumer acceptance and marketability. In this review, the mechanisms of damage development are discussed first. Mathematical modeling provides advanced ways to describe and predict the deformation of fruit with arbitrary geometry, which is important to understand their mechanical responses to external forces. Also, the effects of damage at the cellular and molecular levels are discussed as this provides insight into fruit physiological responses to damage. Next, direct measurement methods for damage including manual evaluation, optical detection, magnetic resonance imaging, and X-ray computed tomography are examined, as well as indirect methods based on physiochemical indexes. Also, methods to measure fruit susceptibility to mechanical damage based on the bruise threshold and the amount of damage per unit of impact energy are reviewed. Further, commonly used external and interior packaging and their applications in reducing damage are summarized, and a recent biomimetic approach for designing novel lightweight packaging inspired by the fruit pericarp. Finally, future research directions are provided.HIGHLIGHTSMathematical modeling has been increasingly used to calculate damage to fruit.Cell and molecular mechanisms response to fruit damage is an under-explored area.Susceptibility measurement of different mechanical forces has received attention.Customized design of reusable and biodegradable packaging is a hot topic of research.
Collapse
Affiliation(s)
- Menghua Lin
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P. R. China
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa
| | - Wouter Saeys
- BIOSYST-MeBioS, KU Leuven-University of Leuven, Leuven, Belgium
| | - Di Wu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P. R. China
- Zhejiang University Zhongyuan Institute, Zhengzhou, P. R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, Wuxi, P. R. China
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- UNESCO International Centre for Biotechnology, Nsukka, Enugu State, Nigeria
| | - Bart Nicolai
- BIOSYST-MeBioS, KU Leuven-University of Leuven, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| | - Kunsong Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
10
|
Liu C, Li M, Ren T, Wang J, Niu C, Zheng F, Li Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Non-Destructive Detection of Damaged Strawberries after Impact Based on Analyzing Volatile Organic Compounds. SENSORS 2022; 22:s22020427. [PMID: 35062387 PMCID: PMC8780591 DOI: 10.3390/s22020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
Strawberries are susceptible to mechanical damage. The detection of damaged strawberries by their volatile organic compounds (VOCs) can avoid the deficiencies of manual observation and spectral imaging technologies that cannot detect packaged fruits. In the present study, the detection of strawberries with impact damage is investigated using electronic nose (e-nose) technology. The results show that the e-nose technology can be used to detect strawberries that have suffered impact damage. The best model for detecting the extent of impact damage had a residual predictive deviation (RPD) value of 2.730, and the correct rate of the best model for identifying the damaged strawberries was 97.5%. However, the accuracy of the prediction of the occurrence time of impact was poor, and the RPD value of the best model was only 1.969. In addition, the gas chromatography-mass spectrophotometry analysis further shows that the VOCs of the strawberries changed after suffering impact damage, which was the reason why the e-nose technology could detect the damaged fruit. The above results show that the mechanical force of impact caused changes in the VOCs of strawberries and that it is possible to detect strawberries that have suffered impact damage using e-nose technology.
Collapse
|
12
|
Aroma dynamic characteristics during the drying process of green tea by gas phase electronic nose and gas chromatography-ion mobility spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Guo Z, Guo C, Sun L, Zuo M, Chen Q, El‐Seedi HR, Zou X. Identification of the apple spoilage causative fungi and prediction of the spoilage degree using electronic nose. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Chuang Guo
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Li Sun
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Min Zuo
- National Engineering Laboratory for Agri‐product Quality Traceability Beijing Technology and Business University Beijing China
| | - Quansheng Chen
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Hesham R. El‐Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC Uppsala University Uppsala Sweden
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Xiaobo Zou
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| |
Collapse
|
14
|
Lin M, Chen J, Wu D, Chen K. Volatile Profile and Biosynthesis of Post-harvest Apples are Affected by the Mechanical Damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9716-9724. [PMID: 34375116 DOI: 10.1021/acs.jafc.1c03532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical damage to fruit causes flavor changes during post-harvest supply chains. It is important to identify the main volatiles and explore their biosynthesis mechanism. In this study, the volatile changes in apples caused by mechanical damage were analyzed by gas chromatography-ion mobility spectrometry. Hexanal and ethyl acetate were accumulated and identified as potential volatile biomarkers to detect damaged apples. The study on the lipoxygenase (LOX) pathway and transcription factors (TFs) shows that mechanical damage up-regulated the expression of MdLOX-like, MdLOX3b, MdLOX7b, MdLOX7c, MdLOX2a, and MdAAT in the LOX pathway and that of one MYB TF (MdMYB-like), five ERF TFs (MdERF073, MdERF003, MdERF114, MdERF15, and MdERF2), and five WRKY TFs (MdWRKY23, MdWRKY17, MdWRKY46, MdWRKY48, and MdWRKY71). Notably, MdAAT was significantly correlated to MdMYB-like, MdWRKY23, MdWRKY71, MdERF15, and MdERF2. Thus, TFs may attribute to the accumulation of hexanal and ethyl acetate by regulating the expression of LOX pathway-related genes.
Collapse
Affiliation(s)
- Menghua Lin
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Jiahui Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| | - Di Wu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China
| | - Kunsong Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, P. R. China
| |
Collapse
|
15
|
Zhang T, Zhu X, Guo J, Gu AZ, Li D, Chen J. Toxicity Assessment of Nano-ZnO Exposure on the Human Intestinal Microbiome, Metabolic Functions, and Resistome Using an In Vitro Colon Simulator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6884-6896. [PMID: 33969685 DOI: 10.1021/acs.est.1c00573] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nano-ZnO, as a commonly used nanomaterial, has been found in drinking water, food, and medicine; therefore, it poses potential health risks via the digestion system. However, little is known about the toxicity of nano-ZnO on the human intestinal microbiome, which plays critical roles in human health. This study comprehensively investigated the impact of nano-ZnO on the human gut microbiome, metabolic functions, and resistome using an in vitro colon simulator. Nano-ZnO induced concentration-dependent decreases in the production of short-chain fatty acids (SCFAs). Metagenomic analysis revealed that nano-ZnO not only led to dose-dependent shifts in the composition and diversity of the gut microbiota but also changed the key functional pathways of the gut microbiome. Although the diversity of the gut microbiota basically recovered after stopping exposure to nano-ZnO, SCFAs still showed a concentration-dependent decrease. Furthermore, although a medium concentration of nano-ZnO (2.5 mg/L) reduced the abundance of many antibiotic resistance genes (ARGs) by inhibiting the growth of related host bacteria, a low concentration of nano-ZnO (0.1 mg/L) greatly enriched the abundance of tetracycline resistance genes. Our findings provide evidence that nano-ZnO can impact the diversity, metabolism, and functional pathways of the human gut microbiome, as well as the gut resistome, highlighting the potential health effects of nanoparticles.
Collapse
Affiliation(s)
- Tingting Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xuan Zhu
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Yang Y, Rong Y, Liu F, Jiang Y, Deng Y, Dong C, Yuan H. Rapid characterization of the volatile profiles in Pu-erh tea by gas phase electronic nose and microchamber/thermal extractor combined with TD-GC-MS. J Food Sci 2021; 86:2358-2373. [PMID: 33929725 DOI: 10.1111/1750-3841.15723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/24/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Aroma plays an important role in the quality of Pu-erh tea. However, the quality evaluation of Pu-erh tea aroma is heavily relied on the experience of sensory evaluation, and the theoretical research is relatively scarce. In the present work, the volatile compounds in Pu-erh tea were characterized by using gas phase electronic nose (e-nose) and microchamber/thermal extractor (µ-CTE) combined with thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). A satisfactory discrimination model (R2 Y = 0.95, Q2 = 0.807) was obtained by using orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor fingerprint of different brands of Pu-erh tea. In addition, based on the double criterion of multivariate analysis with VIP >1.0 and univariate analysis with p ≤ 0.001, 39 volatile components were identified to contribute greatly to the discrimination of five brands of Pu-erh tea. The results suggested that gas phase e-nose and µ-CTE combined with TD-GC/MS were simple, rapid techniques to characterize the volatile compounds in Pu-erh tea and were allowed to effectively distinguish different brands of Pu-erh tea, which would provide an important reference on the quality assessment of Pu-erh tea. PRACTICAL APPLICATION: This work demonstrates that the volatile compounds in Pu-erh tea are simply and rapidly characterized by using µ-CTE/TD-GC/MS and gas phase e-nose, allowing to effectively distinguish different brands of Pu-erh tea, which can provide an important reference for the quality assessment and authentication of Pu-erh tea.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yuting Rong
- Yunnan Shuangjiang Mengku Tea Co., Ltd., Lincang, China
| | - Fuqiao Liu
- Yunnan Shuangjiang Mengku Tea Co., Ltd., Lincang, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chunwang Dong
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
17
|
Aouadi B, Zaukuu JLZ, Vitális F, Bodor Z, Fehér O, Gillay Z, Bazar G, Kovacs Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue-Critical Overview. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5479. [PMID: 32987908 PMCID: PMC7583984 DOI: 10.3390/s20195479] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
Abstract
Amid today's stringent regulations and rising consumer awareness, failing to meet quality standards often results in health and financial compromises. In the lookout for solutions, the food industry has seen a surge in high-performing systems all along the production chain. By virtue of their wide-range designs, speed, and real-time data processing, the electronic tongue (E-tongue), electronic nose (E-nose), and near infrared (NIR) spectroscopy have been at the forefront of quality control technologies. The instruments have been used to fingerprint food properties and to control food production from farm-to-fork. Coupled with advanced chemometric tools, these high-throughput yet cost-effective tools have shifted the focus away from lengthy and laborious conventional methods. This special issue paper focuses on the historical overview of the instruments and their role in food quality measurements based on defined food matrices from the Codex General Standards. The instruments have been used to detect, classify, and predict adulteration of dairy products, sweeteners, beverages, fruits and vegetables, meat, and fish products. Multiple physico-chemical and sensory parameters of these foods have also been predicted with the instruments in combination with chemometrics. Their inherent potential for speedy, affordable, and reliable measurements makes them a perfect choice for food control. The high sensitivity of the instruments can sometimes be generally challenging due to the influence of environmental conditions, but mathematical correction techniques exist to combat these challenges.
Collapse
Affiliation(s)
- Balkis Aouadi
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - John-Lewis Zinia Zaukuu
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Flora Vitális
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Zsanett Bodor
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Orsolya Fehér
- Institute of Agribusiness, Faculty of Economics and Social Sciences, Szent István University, H-2100 Gödöllő, Hungary;
| | - Zoltan Gillay
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - George Bazar
- Department of Nutritional Science and Production Technology, Faculty of Agricultural and Environmental Sciences, Szent István University, H-7400 Kaposvár, Hungary;
- ADEXGO Kft., H-8230 Balatonfüred, Hungary
| | - Zoltan Kovacs
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| |
Collapse
|
18
|
Rao J, Zhang Y, Yang Z, Li S, Wu D, Sun C, Chen K. Application of electronic nose and GC–MS for detection of strawberries with vibrational damage. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
This study evaluated the potential of using electronic nose (e-nose) technology to non-destructively detect strawberry fruits with vibrational damage based on their volatile substances (VOCs).
Materials and methods
Four groups of strawberries with different durations of vibrations (0, 0.5, 1, and 2 h) were prepared, and their e-nose signals were collected at 0, 1, 2, and 3 days after vibration treatment.
Results
The results showed that when the samples from all four sampling days during storage were used for modelling, both the levels of vibrational damage and the day after the damage happened were accurately predicted. The best models had residual prediction deviation values of 2.984 and 5.478. The discrimination models for damaged strawberries also obtained good classification results, with an average correct answer rate of calibration and prediction of 99.24%. When the samples from each sampling day or vibration time were used for modelling, better results were obtained, but these models were not suitable for an actual situation. The gas chromatography–mass spectrophotometry results showed that the VOCs of the strawberries varied after experiencing vibrations, which was the basis for e-nose detection.
Limitations
The changes in VOCs released by other forces should be studied in the future.
Conclusions
The above results showed the potential use of e-nose technology to detect strawberries that have suffered vibrational damage.
Collapse
Affiliation(s)
- Jingshan Rao
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yuchen Zhang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Zhichao Yang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Shaojia Li
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, China
| | - Chongde Sun
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|