Hashimoto M, Taguchi Y. Circular pyramidal kirigami microscanner with millimeter-range low-power lens drive.
OPTICS EXPRESS 2020;
28:17457-17467. [PMID:
32679953 DOI:
10.1364/oe.394908]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
This paper proposes an electrothermally-actuated circular pyramidal kirigami microscanner with a millimeter-range low-power lens drive for endoscopic biomedical applications. A variation of Japanese origami art, kirigami involves creation of out-of-plane structures by paper cutting and folding. The proposed microscanner is composed of freestanding kirigami film on which the spiral-curved thermal bimorphs are strategically placed. The kirigami microscanner is electrothermally transformed into an out-of-plane circular multistep pyramid by Joule heating. The circular pyramidal kirigami microscanner on a small footprint of 4.5 mm × 4.5 mm was fabricated by microelectromechanical system processes. A large four-step pyramidal actuation was successfully demonstrated, and a large 1.1-mm lens travel range at only 128 mW was achieved.
Collapse