1
|
Enhanced photoluminescence of active ions in rugate type multilayer structures. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Bai L, Gao Y, Wang J, Aili T, Jia Z, Lv X, Huang X, Yang J. Detection of β-Lactoglobulin by a Porous Silicon Microcavity Biosensor Based on the Angle Spectrum. SENSORS 2022; 22:s22051912. [PMID: 35271059 PMCID: PMC8914963 DOI: 10.3390/s22051912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
In this paper, carbon quantum dot-labelled β-lactoglobulin antibodies were used for refractive index magnification, and β-lactoglobulin was detected by angle spectroscopy. In this method, the detection light is provided by a He-Ne laser whose central wavelength is the same as that of the porous silicon microcavity device, and the light source was changed to a parallel beam to illuminate the porous silicon microcavity’ surface by collimating beam expansion, and the reflected light was received on the porous silicon microcavity’ surface by a detector. The angle corresponding to the smallest luminous intensity before and after the onset of immune response was measured by a detector for different concentrations of β-lactoglobulin antigen and carbon quantum dot-labelled β-lactoglobulin antibodies, and the relationship between the variation in angle before and after the immune response was obtained for different concentrations of the β-lactoglobulin antigen. The results of the experiment present that the angle variations changed linearly with increasing β-lactoglobulin antigen concentration before and after the immune response. The limit of detection of β-lactoglobulin by this method was 0.73 μg/L, indicating that the method can be used to detect β-lactoglobulin quickly and conveniently at low cost.
Collapse
Affiliation(s)
- Lanlan Bai
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China; (L.B.); (Y.G.)
| | - Yun Gao
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China; (L.B.); (Y.G.)
| | - Jiajia Wang
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; (J.W.); (X.H.)
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China;
| | - Tuerxunnayi Aili
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (T.A.); (J.Y.)
| | - Zhenhong Jia
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; (J.W.); (X.H.)
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China;
- Correspondence:
| | - Xiaoyi Lv
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China;
- School of Software, Xinjiang University, Urumqi 830046, China
| | - Xiaohui Huang
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; (J.W.); (X.H.)
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China;
| | - Jie Yang
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (T.A.); (J.Y.)
| |
Collapse
|