1
|
Moustafa A, Abdel-Gawad SA, Shehata M, El-Kamel RS, Fekry AM. Electrochemical sensing of vitamin B 6 (pyridoxine) by adapted carbon paste electrode. Sci Rep 2024; 14:21972. [PMID: 39304680 DOI: 10.1038/s41598-024-71341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
The recent investigation targets to use adapted carbon paste (CP) with copper nanoparticles (CuNs) operating in a phosphate buffer (PBS) medium with a pH range of 5.0-8.0, to synthesize a novel, susceptible, and simple electrochemical sensor for the detection of one of the most important drugs, vitamin B6. Copper (Cu) is one of the most three common essential trace elements found in the bodies of both humans and animals, along with iron and zinc for all crucial physiological and biochemical functions. Its properties, which are assessed using a variety of methods including scanning electron microscopy (SEM), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS), have also drawn a lot of attention recently. We considered the effects of pH, buffer, scan rate, interference, and calibration curve. The susceptible electrode's linear calibration curve encompassed concentration values between 8.88 and 1000.0 µM. The calculated limits of detection and quantification were 32.12 and 107.0 µM, respectively. Furthermore, this method was established in real human urine samples and drug validation which have been shown satisfactory results for vitamin B6 detection.
Collapse
Affiliation(s)
- Ayah Moustafa
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Soha A Abdel-Gawad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University, Giza, 12613, Egypt.
| | - M Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Renad S El-Kamel
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amany M Fekry
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Zhao J, Wang K, Song Y, Li L, Yang F, Zhao L, Wang Q, Deng G. Determination of moxifloxacin in milk using a ratiometric fluorescent sensor based on Ag-MOF@curcumin. RSC Adv 2024; 14:13482-13488. [PMID: 38665504 PMCID: PMC11043803 DOI: 10.1039/d4ra00906a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Moxifloxacin (MFX) has attracted increasing public concern recently, and the development of a simple and effective analysis method has become a research focus. In this work, a simple, sensitive and ratiometric fluorescent sensor based on Ag-MOF@curcumin was designed and investigated. Ag-MOF@curcumin displays emission at 410 nm and 475 nm under excitation at 330 nm. When MFX is added, a new emission peak appears at 500 nm, and the F500/F410 ratio has a linear relationship with the MFX concentration in the range 0-35 μmol L-1 with a low LOD (0.179 μmol L-1). Finally, the developed sensor was used for the determination of MFX in milk. This work provides an excellent fluorescent sensor for highly selective and rapid detection of MFX residues.
Collapse
Affiliation(s)
- Jiaxing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610068 Sichuan China
| | - Kedan Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| | - Yu Song
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| | - Lu Li
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610068 Sichuan China
| | - Fan Yang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University Chengdu 610068 Sichuan China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610068 Sichuan China
| | - Qihui Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University Chengdu 611130 China
| |
Collapse
|
3
|
Hendawy HA, M. G. Eldin G, Fekry AM. A metal substituted nano ferrite (M = Zn, Cu, Fe and mn; x = 0 and 0.5)] improved Screen-Printed electrode for anodic determination of Toldimfos sodium. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Tajik S, Beitollahi H. Hydrothermal synthesis of CuFe 2O 4 nanoparticles for highly sensitive electrochemical detection of sunset yellow. Food Chem Toxicol 2022; 165:113048. [PMID: 35523384 DOI: 10.1016/j.fct.2022.113048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/27/2022]
Abstract
The sunset yellow, as a synthetic food coloring azo dye, was detected in the present work using a new sensitive and selective sensor based on the modification of screen-printed electrode surface with Copper ferrite nanoparticles (CuFe2O4/SPE). Thus, a facile hydrothermal protocol was performed to prepare the CuFe2O4 nanoparticles, followed by characterization applying valid techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). Chronoamperometry, differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were employed to determine the electrochemical behavior of as-fabricated sensor. According to the electrochemical findings, a greater anodic peak current was found for the sunset yellow oxidation on the CuFe2O4/SPE than that on the unmodified SPE. The electrocatalytic response for the sunset yellow oxidation on the CuFe2O4/SPE in phosphate buffer (0.1 M, pH = 7.0) was effective, with an excellent sensitivity (0.1919 μA μM-1). There was a linear relationship between the voltammetric current and different sunset yellow concentrations (0.03-100.0 μM). The calculated limit of detection (LOD = 3Sb/m) for the sunset yellow was 0.009 μM.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
5
|
Rational Synthesis of Rare-Earth Lanthanum Molybdate Covered Reduced Graphene Oxide Nanocomposites for the Voltammetric Detection of Moxifloxacin hydrochloride. Bioelectrochemistry 2022; 146:108145. [DOI: 10.1016/j.bioelechem.2022.108145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
|
6
|
Tajik S, Askari MB, Ahmadi SA, Nejad FG, Dourandish Z, Razavi R, Beitollahi H, Di Bartolomeo A. Electrochemical Sensor Based on ZnFe 2O 4/RGO Nanocomposite for Ultrasensitive Detection of Hydrazine in Real Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:491. [PMID: 35159836 PMCID: PMC8838434 DOI: 10.3390/nano12030491] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022]
Abstract
We have developed a highly sensitive sensor of ZnFe2O4/reduced graphene oxide (ZnFe2O4/RGO) nanocomposite for electrochemical detection of hydrazine, fabricated by a simple hydrothermal protocol. Subsequently, a screen-printed electrode (SPE) surface was modified with the proposed nanocomposite (ZnFe2O4/RGO/SPE), and revealed an admirable electrocatalytic capacity for hydrazine oxidation. The ZnFe2O4/RGO/SPE sensor could selectively determine micromolar hydrazine concentrations. The as-produced sensor demonstrated excellent ability to detect hydrazine due to the synergistic impacts of the unique electrocatalytic capacity of ZnFe2O4 plus the potent physicochemical features of RGO such as manifold catalytic sites, great area-normalized edge-plane structures, high conductivity, and large surface area. The hydrazine detection using differential pulse voltammetry exhibited a broad linear dynamic range (0.03-610.0 µM) with a low limit of detection (0.01 µM).
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran;
| | - Mohammad Bagher Askari
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran;
| | - Sayed Ali Ahmadi
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman P.O. Box 763151-31167, Iran;
| | - Fraiba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-13439, Iran; (F.G.N.); (Z.D.)
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman P.O. Box 76169-13439, Iran; (F.G.N.); (Z.D.)
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft P.O. Box 78671-55311, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran;
| | - Antonio Di Bartolomeo
- Department of Physics “E.R. Caianaiello”, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Li Z, Zhang J, Sun Q, Shi W, Tao T, Fu Y. Moxifloxacin detection based on fluorescence resonance energy transfer from carbon quantum dots to moxifloxacin using a ratiometric fluorescence probe. NEW J CHEM 2022. [DOI: 10.1039/d1nj05961k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With an increase in the MOX concentration, the fluorescence intensity of CQDs decreases, whereas the fluorescence intensity of MOX increases gradually.
Collapse
Affiliation(s)
- Zhiwen Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, P. R. China
| | - Jiyue Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, P. R. China
| | - Qiyao Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, P. R. China
| | - Wenwen Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, P. R. China
| | - Tingxian Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, P. R. China
| | - Yingqiang Fu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, P. R. China
| |
Collapse
|
8
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
9
|
Albash R, M Abdellatif M, Hassan M, M Badawi N. Tailoring Terpesomes and Leciplex for the Effective Ocular Conveyance of Moxifloxacin Hydrochloride (Comparative Assessment): In-vitro, Ex-vivo, and In-vivo Evaluation. Int J Nanomedicine 2021; 16:5247-5263. [PMID: 34376978 PMCID: PMC8349216 DOI: 10.2147/ijn.s316326] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/10/2021] [Indexed: 12/17/2022] Open
Abstract
Aim To compare the ability of both terpesomes (TPs) and leciplex (LPs) loaded moxifloxacin hydrochloride (MOX) for enhancing ocular drug conveyance. Methods Two separate 21.31 full-factorial trials were established to determine the influence of multiple variables upon nanovesicles properties and select the optimized formulae using Design Expert® software. The thin-film hydration method was used to formulate TPs, while the single-step procedure was used for LPs. All formulae were characterized for their entrapment efficiency percent (EE%), particle size distribution (PS), polydispersity index (PDI), and zeta potential (ZP). Then, the optimized formulae were selected, evaluated, and compared for additional assessments. Results The optimized formulae TP4 and LP1 showed EE% of 84.14±0.21 and 78.47±0.17%, PS of 578.65±5.65 and 102.41±3.39 nm, PDI of 0.56±0.04 and 0.28±0.01, ZP of -12.50±0.30 and 32.50±0.50 mV, respectively. Further, LP1 showed enhanced corneal permeation across cow cornea compared to MOX solution and TP4. Besides, confocal laser scanning microscopy assessment viewed valuable infiltration from the fluoro-labeled LP through corneal layers compared to TP. LP1 showed spherical morphology and, its ability to adhere to mucus membranes was justified. Further, LP1 showed superiority over MOX solution in biofilm inhibition and eradication in addition to the treatment of infected mice with methicillin-resistant Staphylococcus aureus without any inflammatory response. Finally, the histopathological study verified the harmlessness and biocompatibility of the assembled LPs. Conclusion The gained outcomes confirmed the capability of utilizing LPs as a successful nanovesicle for the ocular conveyance of MOX over TPs and MOX solution.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
10
|
Gold-silane complexed antibody immobilization on polystyrene ELISA surface for enhanced determination of matrix Metalloproteinase-9. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Fekry AM, Abdel‐Gawad SA, Azab SM, Walcarius A. A Sensitive Electrochemical Sensor for Moxifloxacin Hydrochloride Based on Nafion/Graphene Oxide/Zeolite Modified Carbon Paste Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amany M. Fekry
- Chemistry Department, Faculty of Science Cairo University Giza 12613 Egypt
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS – Université de Lorraine 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| | | | - Shereen M. Azab
- Pharmaceutical Chemistry Dept. National Organization for Drug Control and Research [NODCAR] 6 Abu Hazem Street, Pyramids Ave, 29 Giza postcode is missing Egypt
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS – Université de Lorraine 405 rue de Vandoeuvre 54600 Villers-les-Nancy France
| |
Collapse
|
12
|
Liu Z, Lei S, Zou L, Li G, Ye B. Grafting homogenous electrochemical biosensing strategy based on reverse proximity ligation and Exo III assisted target circulation for multiplexed communicable disease DNA assay. Biosens Bioelectron 2020; 167:112487. [PMID: 32810705 DOI: 10.1016/j.bios.2020.112487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
Abstract
Rapid and effective diagnosis of communicable disease is one of the critical issues of the modern society, especially for detecting different targets at the same time. In this work, a grafting homogenous electrochemical biosensing strategy is proposed by integrating of reverse proximity ligation and exonuclease III (Exo III) assisted target circulation to analyze hepatitis B (HBV) and human immunodeficiency (HIV). Specially, a two-wing nanodevice (TWD) with two detection paths is elaborately designed based on analogous proximity ligation assay. The reverse proximity ligation process provides a new way of signal conversion and amplification, what accomplished by demolishing the TWD in the presence of targets. Meanwhile, a vast number of signal probes are released via Exo III assisted target circulation. Then the signal probes are grafted on the universal sensing interface, which is decorated with graftable tetrahedron DNA (GTD). These lead to a highly amplified electrochemical signal. Compared with the conventional strategies, the grafting homogenous electrochemical biosensing strategy not only achieves convenient sensitive detection of multiple communicable diseases DNA simultaneously, but also performs well in the detection of sole target. This strategy effectively decreases the background, homogenizes the distribution of probes, and avoids the complex and time-consuming modification process of the working electrode, which holds great potential application in early diagnosis for communicable disease in the future.
Collapse
Affiliation(s)
- Zi Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Sheng Lei
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
13
|
Finšgar M, Jezernik K. The Use of Factorial Design and Simplex Optimization to Improve Analytical Performance of In Situ Film Electrodes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3921. [PMID: 32674513 PMCID: PMC7411898 DOI: 10.3390/s20143921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022]
Abstract
This work presents a systematic approach to determining the significance of the individual factors affecting the analytical performance of in-situ film electrode (FE) for the determination of Zn(II), Cd(II), and Pb(II). Analytical parameters were considered simultaneously, where the lowest limit of quantification, the widest linear concentration range, and the highest sensitivity, accuracy, and precision of the method evidenced a better analytical method. Significance was evaluated by means of a fractional factorial (experimental) design using five factors, i.e., the mass concentrations of Bi(III), Sn(II), and Sb(III), to design the in situ FE, the accumulation potential, and the accumulation time. Next, a simplex optimization procedure was employed to determine the optimum conditions for these factors. Such optimization of the in situ FE showed significant improvement in analytical performance compared to the in situ FEs in the initial experiments and compared to pure in situ FEs (bismuth-film, tin-film, and antimony-film electrodes). Moreover, using the optimized in situ FE electrode, a possible interference effect was checked for different species and the applicability of the electrode was demonstrated for a real tap water sample.
Collapse
Affiliation(s)
- Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | | |
Collapse
|