1
|
Zhang X, Wei W, Qian L, Yao L, Jin X, Xing L, Qian Z. Real-time monitoring of bioelectrical impedance for minimizing tissue carbonization in microwave ablation of porcine liver. Sci Rep 2024; 14:30404. [PMID: 39638842 PMCID: PMC11621451 DOI: 10.1038/s41598-024-80725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The charring tissue generated by the high temperature during microwave ablation can affect the therapeutic effect, such as limiting the volume of the coagulation zone and causing rejection. This paper aimed to prevent tissue carbonization while delivering an appropriate thermal dose for effective ablations by employing a treatment protocol with real-time bioelectrical impedance monitoring. Firstly, the current field response under different microwave ablation statuses is analyzed based on finite element simulation. Next, the change of impedance measured by the electrodes is correlated with the physical state of the ablated tissue, and a microwave ablation carbonization control protocol based on real-time electrical impedance monitoring was established. The finite element simulation results show that the dielectric properties of biological tissues changed dynamically during the ablation process. Finally, the relative change rule of the electrical impedance magnitude of the ex vivo porcine liver throughout the entire MWA process and the reduction of the central zone carbonization were obtained by the MWA experiment. Charring tissue was eliminated without water cooling at 40 W and significantly reduced at 50 W and 60 W. The carbonization during MWA can be reduced according to the changes in tissue electrical impedance to optimize microwave thermal ablation efficacy.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wei Wei
- Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Lu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Liuye Yao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Lidong Xing
- Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| |
Collapse
|
2
|
Santucci F, Nobili M, De Tommasi F, Lo Presti D, Massaroni C, Schena E, Oliva G. Optimizing Sensor Placement for Temperature Mapping during Ablation Procedures. SENSORS (BASEL, SWITZERLAND) 2024; 24:623. [PMID: 38257715 PMCID: PMC10821005 DOI: 10.3390/s24020623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Accurately mapping the temperature during ablation is crucial for improving clinical outcomes. While various sensor configurations have been suggested in the literature, depending on the sensors' type, number, and size, a comprehensive understanding of optimizing these parameters for precise temperature reconstruction is still lacking. This study addresses this gap by introducing a tool based on a theoretical model to optimize the placement of fiber Bragg grating sensors (FBG) within the organ undergoing ablation. The theoretical model serves as a general framework, allowing for adaptation to various situations. In practical application, the model provides a foundational structure, with the flexibility to tailor specific optimal solutions by adjusting problem-specific data. We propose a nonlinear and nonconvex (and, thus, only solvable in an approximated manner) optimization formulation to determine the optimal distribution and three-dimensional placement of FBG arrays. The optimization aims to find a trade-off among two objectives: maximizing the variance of the expected temperatures measured by the sensors, which can be obtained from a predictive simulation that considers both the type of applicator used and the specific organ involved, and maximizing the squared sum of the distances between the sensor pairs. The proposed approach provides a trade-off between collecting diverse temperatures and not having all the sensors concentrated in a single area. We address the optimization problem through the utilization of approximation schemes in programming. We then substantiate the efficacy of this approach through simulations. This study tackles optimizing the FBGs' sensor placement for precise temperature monitoring during tumor ablation. Optimizing the FBG placement enhances temperature mapping, aiding in tumor cell eradication while minimizing damage to surrounding tissues.
Collapse
Affiliation(s)
- Francesca Santucci
- Unit of Automatic Control, Universitá Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.S.); (M.N.)
| | - Martina Nobili
- Unit of Automatic Control, Universitá Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.S.); (M.N.)
| | - Francesca De Tommasi
- Unit of Measurements and Biomedical Instrumentation, Universitá Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.D.T.); (D.L.P.)
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Universitá Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.D.T.); (D.L.P.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Universitá Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.D.T.); (D.L.P.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Universitá Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.D.T.); (D.L.P.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Gabriele Oliva
- Unit of Automatic Control, Universitá Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.S.); (M.N.)
| |
Collapse
|
3
|
De Vita E, Lo Presti D, Massaroni C, Iadicicco A, Schena E, Campopiano S. A review on radiofrequency, laser, and microwave ablations and their thermal monitoring through fiber Bragg gratings. iScience 2023; 26:108260. [PMID: 38026224 PMCID: PMC10660479 DOI: 10.1016/j.isci.2023.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Thermal ablation of tumors aims to apply extreme temperatures inside the target tissue to achieve substantial tumor destruction in a minimally invasive manner. Several techniques are comprised, classified according to the type of energy source. However, the lack of treatment selectivity still needs to be addressed, potentially causing two risks: i) incomplete tumor destruction and recurrence, or conversely, ii) damage of the surrounding healthy tissue. Therefore, the research herein reviewed seeks to develop sensing systems based on fiber Bragg gratings (FBGs) for thermal monitoring inside the lesion during radiofrequency, laser, and microwave ablation. This review shows that, mainly thanks to multiplexing and minimal invasiveness, FBGs provide an optimal sensing solution. Their temperature measurements are the feedback to control the ablation process and allow to investigate different treatments, compare their outcomes, and quantify the impact of factors such as proximity to thermal probe and blood vessels, perfusion, and tissue type.
Collapse
Affiliation(s)
- Elena De Vita
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Agostino Iadicicco
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Stefania Campopiano
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| |
Collapse
|
4
|
Jin X, Liu W, Li Y, Qian L, Zhu Q, Li W, Qian Z. Evaluation method of ex vivo porcine liver reduced scattering coefficient during microwave ablation based on temperature. BIOMED ENG-BIOMED TE 2022; 67:491-501. [DOI: 10.1515/bmt-2022-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
Abstract
The principle of microwave ablation (MWA) is to cause irreversible damage (protein coagulation, necrosis, etc.) to tumor cells at a certain temperature by heating, thereby destroying the tumor. We have long used functional near-infrared spectroscopy (fNIRs) to monitor clinical thermal ablation efficacy. After a lot of experimental verification, it can be found that there is a clear correlation between the reduced scattering coefficient and the degree of tissue damage. During the MWA process, the reduced scattering coefficient has a stable change. Therefore, both temperature (T) and reduced scattering coefficient (
μ
s
′
${\mu }_{s}^{\prime }$
) are related to the thermal damage of the tissue. This paper mainly studies the changing law of T and
μ
s
′
${\mu }_{s}^{\prime }$
during MWA and establishes a relationship model. The two-parameter simultaneous acquisition system was designed and used to obtain the T and
μ
s
′
${\mu }_{s}^{\prime }$
of the ex vivo porcine liver during MWA. The correlation model between T and
μ
s
′
${\mu }_{s}^{\prime }$
is established, enabling the quantitative estimation of
μ
s
′
${\mu }_{s}^{\prime }$
of porcine liver based on T. The maximum and the minimum relative errors of
μ
s
′
${\mu }_{s}^{\prime }$
are 79.01 and 0.39%, respectively. Through the electromagnetic simulation of the temperature field during MWA, 2D and 3D fields of reduced scattering coefficient can also be obtained using this correlation model. This study contributes to realize the preoperative simulation of the optical parameter field of microwave ablation and provide 2D/3D therapeutic effect for clinic.
Collapse
Affiliation(s)
- Xiaofei Jin
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Wenwen Liu
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Yiran Li
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Lu Qian
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Weitao Li
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| | - Zhiyu Qian
- Department of Biomedical Engineering , College of Automation Engineering, Nanjing University of Aeronautics and Astronautics , Nanjing , China
| |
Collapse
|
5
|
Hot Spot Detection of Photovoltaic Module Based on Distributed Fiber Bragg Grating Sensor. SENSORS 2022; 22:s22134951. [PMID: 35808443 PMCID: PMC9269709 DOI: 10.3390/s22134951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022]
Abstract
The hot spot effect is an important factor that affects the power generation performance and service life in the power generation process. To solve the problems of low detection efficiency, low accuracy, and difficulty of distributed hot spot detection, a hot spot detection method using a photovoltaic module based on the distributed fiber Bragg grating (FBG) sensor is proposed. The FBG sensor array was pasted on the surface of the photovoltaic panel, and the drift of the FBG reflected wavelength was demodulated by the tunable laser method, wavelength division multiplexing technology, and peak seeking algorithm. The experimental results show that the proposed method can detect the temperature of the photovoltaic panel in real time and can identify and locate the hot spot effect of the photovoltaic cell. Under the condition of no wind or light wind, the wave number and variation rule of photovoltaic module temperature value, environmental temperature value, and solar radiation power value were basically consistent. When the solar radiation power fluctuated, the fluctuation of hot spot cell temperature was greater than that of the normal photovoltaic cell. As the solar radiation power decreased to a certain value, the temperatures of all photovoltaic cells tended to be similar.
Collapse
|
6
|
Theoretical Evaluation of Microwave Ablation Applied on Muscle, Fat and Bone: A Numerical Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: Microwave ablation (MWA) is a common tumor ablation surgery. Because of the high temperature of the ablation antenna, it is strongly destructive to surrounding vital tissues, resulting in high professional requirements for clinicians. The method used to carry out temperature observation and damage prediction in MWA is significant; (2) Methods: This work employs numerical study to explore temperature distribution of typical tissues in MWA. Firstly, clinical MWA based on isolated biological tissue is implemented. Then, the Pennes models and microwave radiation physics are established based on experimental parameters and existing related research. Initial values and boundary conditions are adjusted to better meet the real clinical materials and experimental conditions. Finally, clinical MWA data test this model. On the premise that the model is matched with clinical MWA, fat and bone are deduced for further heat transfer analysis. (3) Results: Numerical study obtains the temperature distribution of biological tissue in MWA. It observes the heat transfer law of ablation antenna in biological tissue. Additionally, combined with temperature threshold, it generates thermal damage of biological tissues and predicts the possible risks in MWA; (4) Conclusions: This work proposes a numerical study of typical biological tissues. It provides a new theoretical basis for clinically thermal ablation surgery.
Collapse
|
7
|
De Tommasi F, Massaroni C, Grasso RF, Carassiti M, Schena E. Temperature Monitoring in Hyperthermia Treatments of Bone Tumors: State-of-the-Art and Future Challenges. SENSORS (BASEL, SWITZERLAND) 2021; 21:5470. [PMID: 34450911 PMCID: PMC8400360 DOI: 10.3390/s21165470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Bone metastases and osteoid osteoma (OO) have a high incidence in patients facing primary lesions in many organs. Radiotherapy has long been the standard choice for these patients, performed as stand-alone or in conjunction with surgery. However, the needs of these patients have never been fully met, especially in the ones with low life expectancy, where treatments devoted to pain reduction are pivotal. New techniques as hyperthermia treatments (HTs) are emerging to reduce the associated pain of bone metastases and OO. Temperature monitoring during HTs may significantly improve the clinical outcomes since the amount of thermal injury depends on the tissue temperature and the exposure time. This is particularly relevant in bone tumors due to the adjacent vulnerable structures (e.g., spinal cord and nerve roots). In this Review, we focus on the potential of temperature monitoring on HT of bone cancer. Preclinical and clinical studies have been proposed and are underway to investigate the use of different thermometric techniques in this scenario. We review these studies, the principle of work of the thermometric techniques used in HTs, their strengths, weaknesses, and pitfalls, as well as the strategies and the potential of improving the HTs outcomes.
Collapse
Affiliation(s)
- Francesca De Tommasi
- Unit of Measurements and Biomedical Instrumentations, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (F.D.T.); (C.M.)
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentations, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (F.D.T.); (C.M.)
| | - Rosario Francesco Grasso
- Unit of Interventional Radiology, School of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy;
| | - Massimiliano Carassiti
- Unit of Anesthesia, Intensive Care and Pain Management, School of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy;
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentations, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (F.D.T.); (C.M.)
| |
Collapse
|
8
|
Zaltieri M, Massaroni C, Cauti FM, Schena E. Techniques for Temperature Monitoring of Myocardial Tissue Undergoing Radiofrequency Ablation Treatments: An Overview. SENSORS (BASEL, SWITZERLAND) 2021; 21:1453. [PMID: 33669692 PMCID: PMC7922285 DOI: 10.3390/s21041453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Cardiac radiofrequency ablation (RFA) has received substantial attention for the treatment of multiple arrhythmias. In this scenario, there is an ever-growing demand for monitoring the temperature trend inside the tissue as it may allow an accurate control of the treatment effects, with a consequent improvement of the clinical outcomes. There are many methods for monitoring temperature in tissues undergoing RFA, which can be divided into invasive and non-invasive. This paper aims to provide an overview of the currently available techniques for temperature detection in this clinical scenario. Firstly, we describe the heat generation during RFA, then we report the principle of work of the most popular thermometric techniques and their features. Finally, we introduce their main applications in the field of cardiac RFA to explore the applicability in clinical settings of each method.
Collapse
Affiliation(s)
- Martina Zaltieri
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| | - Filippo Maria Cauti
- Arrhythmology Unit, Cardiology Division, S. Giovanni Calibita Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| |
Collapse
|
9
|
Fiber Bragg Grating Sensors for Millimetric-Scale Temperature Monitoring of Cardiac Tissue Undergoing Radiofrequency Ablation: A Feasibility Assessment. SENSORS 2020; 20:s20226490. [PMID: 33202980 PMCID: PMC7698062 DOI: 10.3390/s20226490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/21/2022]
Abstract
Radiofrequency ablation (RFA) is the most widely used technique for the treatment of cardiac arrhythmias. A variety of factors, such as the electrode tip shape, the force exerted on the tissue by the catheter and the delivered power, combine to determine the temperature distribution, and as consequence, the lesion shape and size. In this context, being able to know the temperature reached in the myocardium during the RFA can be helpful for predicting the lesion dimensions to prevent the occurrence of undesired tissue damage. The catheters used so far in such procedures provide single-point temperature measurements within the probe (by means of embedded thermocouples or thermistors), so no information regarding the temperature changes occurring in myocardial tissues can be retrieved. The aim of this study was to assess the feasibility of fiber Bragg grating sensors (FBGs) to perform multi-point and millimetric-scale temperature measurements within myocardium subjected to RFA. The assessment has been performed on ex vivo porcine myocardium specimens undergoing RFA. Data show the feasibility of the proposed solution in providing spatial temperature distribution within the myocardial tissue during the entire RFA. These high-resolved measurements may allow reconstructing the temperature distribution in the tissue. This study lays the foundations for the implementation of 3D thermal maps to investigate how the supplied power, treatment time, force of contact and irrigation flow of the catheter influence the thermal effects within the tissue.
Collapse
|