1
|
Jipp M, Wagner BD, Egbringhoff L, Teichmann A, Rübeling A, Nieschwitz P, Honigmann A, Chizhik A, Oswald TA, Janshoff A. Cell-substrate distance fluctuations of confluent cells enable fast and coherent collective migration. Cell Rep 2024; 43:114553. [PMID: 39150846 DOI: 10.1016/j.celrep.2024.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Collective cell migration is an emergent phenomenon, with long-range cell-cell communication influenced by various factors, including transmission of forces, viscoelasticity of individual cells, substrate interactions, and mechanotransduction. We investigate how alterations in cell-substrate distance fluctuations, cell-substrate adhesion, and traction forces impact the average velocity and temporal-spatial correlation of confluent monolayers formed by either wild-type (WT) MDCKII cells or zonula occludens (ZO)-1/2-depleted MDCKII cells (double knockdown [dKD]) representing highly contractile cells. The data indicate that confluent dKD monolayers exhibit decreased average velocity compared to less contractile WT cells concomitant with increased substrate adhesion, reduced traction forces, a more compact shape, diminished cell-cell interactions, and reduced cell-substrate distance fluctuations. Depletion of basal actin and myosin further supports the notion that short-range cell-substrate interactions, particularly fluctuations driven by basal actomyosin, significantly influence the migration speed of the monolayer on a larger length scale.
Collapse
Affiliation(s)
- Marcel Jipp
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Bente D Wagner
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Lisa Egbringhoff
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Andreas Teichmann
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Angela Rübeling
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Paul Nieschwitz
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Alf Honigmann
- Biotechnology Center, Technische Universität Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Alexey Chizhik
- University of Göttingen, Third Institute of Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tabea A Oswald
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Hung YH, Chiu WC, Fuh SR, Lai YT, Tung TH, Huang CC, Lo CM. ECIS Based Electric Fence Method for Measurement of Human Keratinocyte Migration on Different Substrates. BIOSENSORS 2022; 12:bios12050293. [PMID: 35624596 PMCID: PMC9138674 DOI: 10.3390/bios12050293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 05/28/2023]
Abstract
Electric Cell-substrate Impedance Sensing (ECIS) is an impedance-based, real-time, and label-free measuring system for monitoring cellular activities in tissue culture. Previously, ECIS wound healing assay has been used to wound cells with high electric current and monitor the subsequent cell migration. In this study, we applied ECIS electric fence (EF) method, an alternative to electrical wounding, to assess the effects of different surface coatings on human keratinocyte (HaCaT) migration. The EF prevents inoculated cells from attaching or migrating to the fenced electrode surface while maintaining the integrity of the surface coating. After the EF is turned off, cells migrate into the cell-free area, and the increase in measured impedance is monitored. We cultured HaCaT cells on gold electrodes without coating or coated with poly-L-lysin (PLL), poly-D-lysine (PDL), or type-I collagen. We quantified migration rates according to the different slopes in the impedance time series. It was observed that either poly-L-lysine (PLL) or poly-D-lysine (PDL) limits cell adhesion and migration rates. Furthermore, the surface charge of the coated substrate in the culture condition positively correlates with the cell adhesion and migration process. Our results indicate that the EF method is useful for determining cell migration rates on specific surface coatings.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.H.); (W.-C.C.); (S.-R.F.); (Y.-T.L.); (T.-H.T.)
| | - Wei-Chih Chiu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.H.); (W.-C.C.); (S.-R.F.); (Y.-T.L.); (T.-H.T.)
| | - Shyh-Rong Fuh
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.H.); (W.-C.C.); (S.-R.F.); (Y.-T.L.); (T.-H.T.)
- Department of Aesthetic Medicine, Chen Hsin General Hospital, Taipei 112, Taiwan
| | - Yi-Ting Lai
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.H.); (W.-C.C.); (S.-R.F.); (Y.-T.L.); (T.-H.T.)
| | - Tse-Hua Tung
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.H.); (W.-C.C.); (S.-R.F.); (Y.-T.L.); (T.-H.T.)
| | - Chun-Chung Huang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.H.); (W.-C.C.); (S.-R.F.); (Y.-T.L.); (T.-H.T.)
| | - Chun-Min Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.H.); (W.-C.C.); (S.-R.F.); (Y.-T.L.); (T.-H.T.)
| |
Collapse
|
3
|
Shen H, Duan M, Gao J, Wu Y, Jiang Q, Wu J, Li X, Jiang S, Ma X, Wu M, Tan B, Yin Y. ECIS-based biosensors for real-time monitor and classification of the intestinal epithelial barrier damages. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Gao J, Song G, Shen H, Wu Y, Zhao C, Zhang Z, Jiang Q, Li X, Ma X, Tan B, Yin Y. Allicin Improves Intestinal Epithelial Barrier Function and Prevents LPS-Induced Barrier Damages of Intestinal Epithelial Cell Monolayers. Front Immunol 2022; 13:847861. [PMID: 35185936 PMCID: PMC8854216 DOI: 10.3389/fimmu.2022.847861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Gut barrier disruption is the initial pathogenesis of various diseases. We previously reported that dietary allicin improves tight junction proteins in the endoplasmic reticulum stressed jejunum. However, whether the allicin benefits the gut barrier within mycotoxin or endotoxin exposure is unknown. In the present study, IPEC-J2 cell monolayers within or without deoxynivalenol (DON) or lipopolysaccharide (LPS) challenges were employed to investigate the effects of allicin on intestinal barrier function and explore the potential mechanisms. Results clarified that allicin at 2 μg/mL increased the viability, whereas the allicin higher than 10 μg/mL lowered the viability of IPEC-J2 cells via inhibiting cell proliferation. Besides, allicin increased trans-epithelial electric resistance (TEER), decreased paracellular permeability, and enhanced ZO-1 integrity of the IPEC-J2 cell monolayers. Finally, allicin supplementation prevented the LPS-induced barrier damages via activating Nrf2/HO-1 pathway-dependent antioxidant system. In conclusion, the present study strongly confirmed allicin as an effective nutrient to improve intestinal barrier function and prevent bacterial endotoxin-induced barrier damages.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guanzhong Song
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haibo Shen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yiming Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhuo Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Qian Jiang,
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
5
|
Wang SH, Tung TH, Chiu SP, Chou HY, Hung YH, Lai YT, Lee YW, Lee SP, Lo CM. Detecting Effects of Low Levels of FCCP on Stem Cell Micromotion and Wound-Healing Migration by Time-Series Capacitance Measurement. SENSORS 2021; 21:s21093017. [PMID: 33923058 PMCID: PMC8123359 DOI: 10.3390/s21093017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/17/2023]
Abstract
Electric cell–substrate impedance sensing (ECIS) has been used as a real-time impedance-based method to quantify cell behavior in tissue culture. The method is capable of measuring both the resistance and capacitance of a cell-covered microelectrode at various AC frequencies. In this study, we demonstrate the application of high-frequency capacitance measurement (f = 40 or 64 kHz) for the sensitive detection of both the micromotion and wound-healing migration of human mesenchymal stem cells (hMSCs). Impedance measurements of cell-covered electrodes upon the challenge of various concentrations of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), from 0.1 to 30 μM, were conducted using ECIS. FCCP is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS), thereby reducing mitochondrial ATP production. By numerically analyzing the time-series capacitance data, a dose-dependent decrease in hMSC micromotion and wound-healing migration was observed, and the effect was significantly detected at levels as low as 0.1 μM. While most reported works with ECIS use the resistance/impedance time series, our results suggest the potential use of high-frequency capacitance time series for assessing migratory cell behavior such as micromotion and wound-healing migration.
Collapse
Affiliation(s)
- Si-Han Wang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan; (S.-H.W.); (T.-H.T.); (H.-Y.C.); (Y.-H.H.); (Y.-T.L.); (Y.-W.L.)
| | - Tse-Hua Tung
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan; (S.-H.W.); (T.-H.T.); (H.-Y.C.); (Y.-H.H.); (Y.-T.L.); (Y.-W.L.)
| | - Sheng-Po Chiu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Hsin-Yi Chou
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan; (S.-H.W.); (T.-H.T.); (H.-Y.C.); (Y.-H.H.); (Y.-T.L.); (Y.-W.L.)
| | - Yu-Han Hung
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan; (S.-H.W.); (T.-H.T.); (H.-Y.C.); (Y.-H.H.); (Y.-T.L.); (Y.-W.L.)
| | - Yi-Ting Lai
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan; (S.-H.W.); (T.-H.T.); (H.-Y.C.); (Y.-H.H.); (Y.-T.L.); (Y.-W.L.)
| | - Yu-Wei Lee
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan; (S.-H.W.); (T.-H.T.); (H.-Y.C.); (Y.-H.H.); (Y.-T.L.); (Y.-W.L.)
| | - Shiao-Pieng Lee
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Tri-Service General Hospital, Taipei 11490, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (S.-P.L.); (C.-M.L.)
| | - Chun-Min Lo
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan; (S.-H.W.); (T.-H.T.); (H.-Y.C.); (Y.-H.H.); (Y.-T.L.); (Y.-W.L.)
- Correspondence: (S.-P.L.); (C.-M.L.)
| |
Collapse
|