1
|
Li L, Li J, Kim BH, Huang J. The effect of morphology and crystal structure on the photocatalytic and photoelectrochemical performances of WO 3. RSC Adv 2024; 14:2080-2087. [PMID: 38196906 PMCID: PMC10775019 DOI: 10.1039/d3ra07329g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
A template-based solvothermal method was successfully developed for the controlled synthesis of two-dimensional (2D) monoclinic WO3 nanoplate/nanosheet arrays and three-dimensional (3D) hexagonal WO3 nanosphere/nanocage structures with single crystal petals. The structure-directing agents played an important role in controlling the morphology and phase of WO3 samples. The results showed that the WO3 nanospheres exhibited the highest visible light absorption capacity and a photocurrent density of 0.37 mA cm-2 at 1.23 V vs. RHE under simulated sunlight. Moreover, the photocatalytic dye results displayed 83.2% methylene blue degradation and 87.9% rhodamine B degradation within 120 min under visible light irradiation. The high performance of the WO3 nanospheres, resulted from the hierarchical structure, increased surface area and enhanced light absorption, which improved the photogenerated charge carrier transfer and separation capability.
Collapse
Affiliation(s)
- Lihua Li
- School of Materials Science and Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Jingjing Li
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology Luoyang 471023 China
| | - BoK-Hee Kim
- School of Materials Science and Engineering, Henan University of Science and Technology Luoyang 471023 China
- Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University Jeonju 561-756 South Korea
| | - Jinliang Huang
- School of Materials Science and Engineering, Henan University of Science and Technology Luoyang 471023 China
| |
Collapse
|
2
|
Liu Y, Yin X, Li C, Xie Z, Zhao F, Li J, Hei J, Han Y, Wang N, Zuo P. Defective silicotungstic acid-loaded magnetic floral N-doped carbon microspheres for ultra-fast oxidative desulfurization of high sulfur liquid fuels. Dalton Trans 2023; 52:17524-17537. [PMID: 37961750 DOI: 10.1039/d3dt03028h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Highly active Keggin-type silicotungstic acid (SiW12) with oxygen vacancy (Ov) defects was encapsulated into the magnetic floral N-doped carbon microspheres (γ-Fe2O3@NC-300) through the facile one-step air pyrolysis of the precursor comprising core-shell Fe3O4@polydopamine (Fe3O4@PDA) and SiW12 to prepare γ-Fe2O3@NC@SiW12-300. The fabricated catalysts were systematically characterized and subsequently employed for the oxidation desulfurization (ODS) of the model fuel. The magnetic floral γ-Fe2O3@NC@SiW12-300 catalyst exhibited nearly perfect catalytic activity, which under mild conditions could remove 100% amount of 4000 ppm DBT in model fuel within 20 min (0.03 g catalysts and n(H2O2)/n(S) of 2). The catalyst activity is mainly attributed to the high activity SiW12 with the Ov defect and its outstanding dispersibility in γ-Fe2O3@NC, along with the high number of exposed active sites. A selected catalyst, γ-Fe2O3@NC@SiW12-300, showed a noticeable turnover frequency (TOF) (110.07 h-1) and lower activation energy (38.79 kJ mol-1) in oxidative desulfurization (ODS) with good recyclability. HO˙ radical was found to be the active species involved in ODS as confirmed by the EPR and scavenger experiments. Additionally, the fabricated catalyst can be conveniently separated and recycled within an externally applied magnetic field.
Collapse
Affiliation(s)
- Yefeng Liu
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
- Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, Chaohu University, Chaohu, 238000, P. R. China
| | - Xiaojie Yin
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
| | - Chuan Li
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
| | - Zhong Xie
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
| | - Fuyan Zhao
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
| | - Jing Li
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
| | - Jinpei Hei
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
| | - Yang Han
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
| | - Nannan Wang
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
| | - Peng Zuo
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, 1 Bantang Road, Chaohu, 238000, P. R. China.
| |
Collapse
|
4
|
Li J, Ding Q, Mo X, Zou Z, Cheng P, Li Y, Sun K, Fu Y, Wang Y, He D. A highly stable and sensitive ethanol sensor based on Ru-decorated 1D WO 3 nanowires. RSC Adv 2021; 11:39130-39141. [PMID: 35492475 PMCID: PMC9044460 DOI: 10.1039/d1ra06623d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/20/2021] [Indexed: 12/19/2022] Open
Abstract
Decorating materials with noble metal catalysts is an effective method for optimizing the sensing performance of sensors based on tungsten trioxide (WO3) nanowires. Ruthenium (Ru) exhibits excellent catalytic activity for oxygen adsorption/desorption and chemical reactions between gases and adsorbed oxygen. Herein, small Ru nanoparticles were uniformly distributed on the surface of one-dimensional WO3 nanowires. The nanowires were prepared by the electrospinning method through an ultraviolet (UV) irradiation process, and decoration with Ru did not change their morphology. A sensor based on 4% Ru nanowires (NWs) shows the highest response (∼120) to 100 ppm ethanol, which was increased around 47 times, and the lowest ethanol detection limit (221 ppb) at a lower temperature (200 °C) displays outstanding repeatability and stability even after 45 days or in higher-humidity conditions. Moreover, it also has faster response–recovery features. The improvement in the sensing performance was attributed to the stable morphology of the nanowires, the sensitization effect of Ru, the catalytic effect of RuO2 and the optimal atomic utilization efficiency. This work offers an effective and promising strategy for promoting the ethanol sensing performance of WO3. Decorating Ru does not effect the morphology of NWs, increased the oxygen vacancies, adsorbed oxygen. This strategy results in a better sensing performance (∼120 to 100 ppm ethanol was increased around 47 times at 200 °C) and humidity resistance.![]()
Collapse
Affiliation(s)
- Jianjun Li
- School of Physical Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Qiongling Ding
- School of Physical Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Xichao Mo
- School of Physical Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Zihao Zou
- School of Materials and Energy, Lanzhou University Lanzhou 730000 China
| | - Pu Cheng
- School of Materials and Energy, Lanzhou University Lanzhou 730000 China
| | - Yiding Li
- School of Materials and Energy, Lanzhou University Lanzhou 730000 China
| | - Kai Sun
- School of Materials and Energy, Lanzhou University Lanzhou 730000 China
| | - Yujun Fu
- School of Materials and Energy, Lanzhou University Lanzhou 730000 China
| | - Yanrong Wang
- School of Physical Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Deyan He
- School of Materials and Energy, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
5
|
Dalenjan FA, Bagheri–Mohagheghi MM, Shirpay A. The effect of cobalt (Co) concentration on structural, optical, and electrochemical properties of tungsten oxide (WO3) thin films deposited by spray pyrolysis. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Alkedeh O, Priefer R. The Ketogenic Diet: Breath Acetone Sensing Technology. BIOSENSORS-BASEL 2021; 11:bios11010026. [PMID: 33478049 PMCID: PMC7835940 DOI: 10.3390/bios11010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022]
Abstract
The ketogenic diet, while originally thought to treat epilepsy in children, is now used for weight loss due to increasing evidence indicating that fat is burned more rapidly when there is a low carbohydrate intake. This low carbohydrate intake can lead to elevated ketone levels in the blood and breath. Breath and blood ketones can be measured to gauge the level of ketosis and allow for adjustment of the diet to meet the user’s needs. Blood ketone levels have been historically used, but now breath acetone sensors are becoming more common due to less invasiveness and convenience. New technologies are being researched in the area of acetone sensors to capitalize on the rising popularity of the diet. Current breath acetone sensors come in the form of handheld breathalyzer devices. Technologies in development mostly consist of semiconductor metal oxides in different physio-chemical formations. These current devices and future technologies are investigated here with regard to utility and efficacy. Technologies currently in development do not have extensive testing of the selectivity of the sensors including the many compounds present in human breath. While some sensors have undergone human testing, the sample sizes are very small, and the testing was not extensive. Data regarding current devices is lacking and more research needs to be done to effectively evaluate current devices if they are to have a place as medical devices. Future technologies are very promising but are still in early development stages.
Collapse
|
7
|
Shellaiah M, Sun KW. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:633. [PMID: 33477501 PMCID: PMC7831086 DOI: 10.3390/s21020633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
Environmental pollution related to volatile organic compounds (VOCs) has become a global issue which attracts intensive work towards their controlling and monitoring. To this direction various regulations and research towards VOCs detection have been laid down and conducted by many countries. Distinct devices are proposed to monitor the VOCs pollution. Among them, chemiresistor devices comprised of inorganic-semiconducting materials with diverse nanostructures are most attractive because they are cost-effective and eco-friendly. These diverse nanostructured materials-based devices are usually made up of nanoparticles, nanowires/rods, nanocrystals, nanotubes, nanocages, nanocubes, nanocomposites, etc. They can be employed in monitoring the VOCs present in the reliable sources. This review outlines the device-based VOC detection using diverse semiconducting-nanostructured materials and covers more than 340 references that have been published since 2016.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
| |
Collapse
|
8
|
Wang S, Zhang H, Li H, Wu R, Hua Z, Wu Y, Tian X. NH3 Sensing Properties with Cr-loaded WO3 Nanosheets. CHEM LETT 2020. [DOI: 10.1246/cl.200485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaohua Wang
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hanying Zhang
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hao Li
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Ruijie Wu
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Zhongqiu Hua
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Wu
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xuemin Tian
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|