1
|
Choi H. Harmonic-Reduced Bias Circuit for Ultrasound Transducers. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094438. [PMID: 37177641 PMCID: PMC10181787 DOI: 10.3390/s23094438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The gain of class-C power amplifiers is generally lower than that of class-A power amplifiers. Thus, higher-amplitude input voltage signals for class-C power amplifiers are required. However, high-amplitude input signals generate unwanted harmonic signals. Therefore, a novel bias circuit was proposed to suppress the harmonic signals generated by class-C power amplifiers, which improves the output voltage amplitudes. To verify the proposed idea, the input harmonic signals when using a harmonic-reduced bias circuit (-61.31 dB, -89.092 dB, -90.53 dB, and -90.32 dB) were measured and were found to be much lower than those when using the voltage divider bias circuit (-57.19 dB, -73.49 dB, -70.97 dB, and -73.61 dB) at 25 MHz, 50 MHz, 75 MHz, and 100 MHz, respectively. To further validate the proposed idea, the pulse-echo measurements were compared using the bias circuits. The peak-to-peak echo amplitude and bandwidth of the piezoelectric transducer, measured when using a harmonic-reduced bias circuit (27.07 mV and 37.19%), were higher than those achieved with a voltage divider circuit (18.55 mV and 22.71%). Therefore, the proposed scheme may be useful for ultrasound instruments with low sensitivity.
Collapse
Affiliation(s)
- Hojong Choi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Choi H. An Inverse Class-E Power Amplifier for Ultrasound Transducer. SENSORS (BASEL, SWITZERLAND) 2023; 23:3466. [PMID: 37050526 PMCID: PMC10098776 DOI: 10.3390/s23073466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
An inverse Class-E power amplifier was designed for an ultrasound transducer. The proposed inverse Class-E power amplifier can be useful because of the low series inductance values used in the output matching network that helps to reduce signal distortions. Therefore, a newly designed Class-E power amplifier can obtain a proper echo signal quality. The measured output voltage, voltage gain, voltage gain difference, and power efficiency were 50.1 V, 22.871 dB, 0.932 dB, and 55.342%, respectively. This low voltage difference and relatively high efficiency could verify the capability of the ultrasound transducer. The pulse-echo response experiment using an ultrasound transducer was performed to verify the capability of the proposed inverse Class-E power amplifier. The obtained echo signal amplitude and pulse width were 6.01 mVp-p and 0.81 μs, respectively. The -6 dB bandwidth and center frequencies of the echo signal were 27.25 and 9.82 MHz, respectively. Consequently, the designed Class-E power amplifier did not significantly alter the performance of the center frequency of the ultrasound transducer; therefore, it could be employed particularly in certain ultrasound applications that require high linearity and reasonable power efficiency.
Collapse
Affiliation(s)
- Hojong Choi
- Department of Electronic Engineering, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Choi H. A Doherty Power Amplifier for Ultrasound Instrumentation. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052406. [PMID: 36904610 PMCID: PMC10007245 DOI: 10.3390/s23052406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/27/2023]
Abstract
The ultrasound instrumentation uses linear power amplifiers with low power efficiency, generating unwanted heat and resulting in the deterioration of the echo signal quality of measured targets. Therefore, this study aims to develop a power amplifier scheme to increase power efficiency while maintaining appropriate echo signal quality. In communication systems, the Doherty power amplifier has shown relatively good power efficiency while producing high signal distortion. The same design scheme cannot be directly applied to ultrasound instrumentation. Therefore, the Doherty power amplifier needs to be re-designed. To verify the feasibility of the instrumentation, a Doherty power amplifier was designed to obtain high power efficiency. The measured gain, output 1-dB compression point, and power-added efficiency of the designed Doherty power amplifier were 33.71 dB, 35.71 dBm, and 57.24% at 25 MHz, respectively. In addition, the performance of the developed amplifier was measured and tested using the ultrasound transducer through the pulse-echo responses. The output power with 25 MHz, 5-cycle, and 43.06 dBm generated from the Doherty power amplifier was sent through the expander to the focused ultrasound transducer with 25 MHz and 0.5″ diameter. The detected signal was sent via a limiter. Afterwards, the signal was amplified by a 36.8 dB gain preamplifier, and then displayed in the oscilloscope. The measured peak-to-peak amplitude in the pulse-echo response with an ultrasound transducer was 0.9698 V. The data showed a comparable echo signal amplitude. Therefore, the designed Doherty power amplifier can improve the power efficiency used for medical ultrasound instrumentation.
Collapse
Affiliation(s)
- Hojong Choi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Zhang J, Ma K, Wang J, Feng P, Ahmad S. A Fast and Accurate Frequency Tracking Method for Ultrasonic Cutting System via the Synergetic Control of Phase and Current. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:902-910. [PMID: 34936553 DOI: 10.1109/tuffc.2021.3137391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrasonic cutting is a superior machining process for brittle materials, owing to its capability to reduce the cutting force and improve the surface quality. To avoid the destructive instability of ultrasonic vibration induced by the cutting force, the excitation frequency of the ultrasonic system must reliably track its resonance frequency. However, it remains challenging for the conventional frequency tracking methods via one parameter to simultaneously achieve both high response rate and high tracking accuracy. This study proposes that more than one parameter could be coupled to get advantages from each parameter. A frequency tracking method via the synergetic control of circuit phase and current of the ultrasonic system was proposed as an example. This method utilizes the phase to responsively determine the tracking direction and uses the characteristic current as the endpoint frequency to ensure accuracy. Theoretical analyses and numerical simulations were conducted to demonstrate that the proposed method can accurately track the frequency of maximum vibration amplitude with a higher response rate than conventional methods. Moreover, ultrasonic cutting tests were performed on Nomex composites to evaluate the machining performance of the ultrasonic system with the proposed method. The experimental results verify that the proposed frequency tracking method enables the ultrasonic system to reach a stable state with a shorter response time, which is beneficial for the reduction of cutting-induced defects.
Collapse
|
5
|
Choi H. Novel dual-resistor-diode limtier circuit structures for high-voltage reliable ultrasound receiver systems. Technol Health Care 2022; 30:513-520. [PMID: 35124625 PMCID: PMC9028643 DOI: 10.3233/thc-228047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The limiters have been used to protect the ultrasound receivers because of the inherent characteristic of the transducers which are required to use the high voltage excitation to obtain the reasonable echo signal amplitudes. OBJECTIVE: Among the variety of the limiters, the performances of discharge voltage degradation from the limiters gradually deteriorate the whole ultrasound systems according to the applied voltages of the ultrasonic transducers. This could cause the ultrasound systems to be unreliable for the long-term operations, resulting in possibly breaking the receiver systems. METHODS: Designed limiters were evaluated with insertion loss, total harmonic distortion, and pulse-echo responses with the ultrasound transducer devices. RESULTS: Designed new dual-resistor-diode limiters exhibited greater and faster suppression of the pulse width (1.15 V and 6.1 μs) for high-voltage signals. CONCLUSIONS: Our proposed dual-resistor-diode limiter could be one of the potential candidates for reliable ultrasound receiver system.
Collapse
|
6
|
Ryu S, Ryu J, Choi H. Fisheye lens design for solar-powered mobile ultrasound devices. Technol Health Care 2022; 30:243-250. [PMID: 35124601 PMCID: PMC9028671 DOI: 10.3233/thc-228023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Compared to benchtop ultrasound machines, mobile ultrasound machines require portable batteries when acquiring information regarding human tissues during outdoor activities. OBJECTIVE: A novel fisheye lens type was designed to address the charging issue where it is difficult to constantly track the sun. This method does not require the use of a mechanical motor that constantly tracks the sun to charge the portable batteries. METHODS: To obtain an optical solar power system, the numerical aperture (NA) and field angle must be increased. Therefore, we use the fisheye lens with the largest field angle. RESULTS: The NA of the designed fisheye lens system reaches 0.75, allowing light collection of approximately ± 48∘. Additionally, the efficiency ratio of the central and surrounding areas also satisfies more than 80% at a field angle of 85∘ and more than 70% at field angles of 85∘ to 90∘, respectively. CONCLUSIONS: We designed a novel fisheye lens for solar-powered mobile ultrasound machines used outdoors.
Collapse
Affiliation(s)
- Seonho Ryu
- Department of Optical System Engineering, Kumoh National Institute of Technology, Gumi, Korea
| | - Jaemyung Ryu
- Department of Optical System Engineering, Kumoh National Institute of Technology, Gumi, Korea
| | - Hojong Choi
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Korea
| |
Collapse
|
7
|
Han R, Zheng L, Li G, Chen G, Ma S, Cai S, Li Y. Self-Poled Poly(vinylidene fluoride)/MXene Piezoelectric Energy Harvester with Boosted Power Generation Ability and the Roles of Crystalline Orientation and Polarized Interfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46738-46748. [PMID: 34546702 DOI: 10.1021/acsami.1c14007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micropiezoelectric devices have become one of the most competitive candidates for use in self-powered flexible and portable electronic products because of their instant response and mechanic-electric conversion ability. However, achievement of high output performance of micropiezoelectric devices is still a significant and challenging task. In this study, a poly(vinylidene fluoride) (PVDF)/MXene piezoelectric microdevice was fabricated through a microinjection molding process. The synergistic effect of both an intense shear rate (>104 s-1) as well as numerous polar C-F functional groups in MXene flakes promoted the formation of β-form crystals of PVDF in which the crystallinity of β-form could reach as high as 59.9%. Moreover, the shear-induced shish-kebab crystal structure with a high orientation degree (fh = ∼0.9) and the stacked MXene acted as the driving force for the dipoles to regularly arrange and produce a self-polarizing effect. Without further polarization, the fabricated piezoelectric microdevices exhibited an open-circuit voltage of 15.2 V and a short-circuit current of 497.3 nA, under optimal conditions (400 mm s-1 and 1 wt % MXene). Impressively, such piezoelectric microdevices can be used for energy storage and for sensing body motion to monitor exercise, and this may have a positive impact on next-generation smart sports equipment.
Collapse
Affiliation(s)
- Rui Han
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lang Zheng
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Guangzhao Li
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Gang Chen
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Sude Ma
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Shuang Cai
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
8
|
Huang W, Lian J, Chen M, An D. Bidirectional Active Piezoelectric Actuator Based on Optimized Bridge-Type Amplifier. MICROMACHINES 2021; 12:mi12091013. [PMID: 34577656 PMCID: PMC8472702 DOI: 10.3390/mi12091013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 01/28/2023]
Abstract
Piezoelectric actuators based on bridge displacement amplifying mechanisms are widely used in precision driving and positioning fields. The classical bridge mechanism relies on structural flexibility to realize the return stroke, which leads to the low positioning accuracy of the actuator. In this paper, a series bridge mechanism is proposed to realize a bidirectional active drive; the return stroke is driven by a piezoelectric stack rather than by the flexibility of the structure. By analyzing the parameter sensitivity of the bridge mechanism, the series actuation of the bridge mechanism is optimized and the static and dynamic solutions are carried out by using the finite element method. Compared with the hysteresis loop of the piezoelectric stack, the displacement curve of the proposed actuator is symmetric, and the maximum nonlinear error is improved. The experimental results show that the maximum driving stroke of the actuator is 129.41 μm, and the maximum nonlinear error is 5.48%.
Collapse
|
9
|
Backstepping Sliding-Mode Control of Piezoelectric Single-Piston Pump-Controlled Actuator. ACTUATORS 2021. [DOI: 10.3390/act10070154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A piston piezoelectric (PZT) pump has many advantages for the use of light actuators. How to deal with the contradiction between the intermittent oil supplying and position control precision is essential when designing the controller. In order to accurately control the output of the actuator, a backstepping sliding-mode control method based on the Lyapunov function is introduced, and the controller is designed on the basis of establishing the mathematical model of the system. The simulation results show that, compared with fuzzy PID and ordinary sliding-mode control, backstepping sliding-mode control has a stronger anti-jamming ability and tracking performance, and improves the control accuracy and stability of the piezoelectric pump-controlled actuator system.
Collapse
|
10
|
Modeling Focused-Ultrasound Response for Non-Invasive Treatment Using Machine Learning. Bioengineering (Basel) 2021; 8:bioengineering8060074. [PMID: 34206007 PMCID: PMC8226898 DOI: 10.3390/bioengineering8060074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The interactions between body tissues and a focused ultrasound beam can be evaluated using various numerical models. Among these, the Rayleigh-Sommerfeld and angular spectrum methods are considered to be the most effective in terms of accuracy. However, they are computationally expensive, which is one of the underlying issues of most computational models. Typically, evaluations using these models require a significant amount of time (hours to days) if realistic scenarios such as tissue inhomogeneity or non-linearity are considered. This study aims to address this issue by developing a rapid estimation model for ultrasound therapy using a machine learning algorithm. Several machine learning models were trained on a very-large dataset (19,227 simulations), and the performance of these models were evaluated with metrics such as Root Mean Squared Error (RMSE), R-squared (R2), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The resulted random forest provides superior accuracy with an R2 value of 0.997, an RMSE of 0.0123, an AIC of -82.56, and a BIC of -81.65 on an external test dataset. The results indicate the efficacy of the random forest-based model for the focused ultrasound response, and practical adoption of this approach will improve the therapeutic planning process by minimizing simulation time.
Collapse
|
11
|
Li X, Bi C, Li Z, Liu B, Wang T, Zhang S. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body. MICROMACHINES 2021; 12:mi12060626. [PMID: 34071414 PMCID: PMC8228896 DOI: 10.3390/mi12060626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
To meet the needs of low-power microelectronic devices for on-site self-supply energy, a galloping piezoelectric-electromagnetic energy harvester (GPEEH) is proposed. It consists of a galloping piezoelectric energy harvester (GPEH) and an electromagnetic energy harvester (EEH), which is installed inside the bluff body of the GPEH. The vibration at the end of the GPEH cantilever drives the magnet to vibrate, so that electromagnetic energy can be captured by cutting off the induced magnetic field lines. The coupling structure is a two-degree-of-freedom motion, which improves the output power of the energy harvester. Based on Hamilton's variational principle and quasi-static hypothesis, the piezoelectric-electromagnetic vibrated coupling equation is established, and the output characteristics of GPEEH are obtained by the method of numerical simulation. Using the method of numerical simulation, studies a series of parameters on the output performance. when the wind speed is 9 m/s, the effective output power of the GPEEH is compared with the classical galloping piezoelectric energy harvester (CGPEH) who is no magnet. It is found that the output power of GPEEH 121% higher than the output power of CGPEH. Finally, set up an experimental platform, and test and verify. The experimental analysis results show that the simulated output parameter curves are basically consistent with the experimental drawing curves. In addition, when the wind speed is 9 m/s, under the same parameters, the effective output power of the GPEEH is 112.5% higher than that of the CGPEH. The correctness of the model is verified.
Collapse
Affiliation(s)
- Xia Li
- Correspondence: (X.L.); (B.L.)
| | | | | | | | | | | |
Collapse
|
12
|
A New Approach to Power Efficiency Improvement of Ultrasonic Transmitters via a Dynamic Bias Technique. SENSORS 2021; 21:s21082795. [PMID: 33921082 PMCID: PMC8071451 DOI: 10.3390/s21082795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
To obtain a high-quality signal from an ultrasound system through the transmitter, it is necessary to achieve an appropriate operating point of the power amplifier in the ultrasonic transmitter by applying high static bias voltage. However, the power amplifier needs to be operated at low bias voltage, because a power amplifier operating at high bias voltage may consume a large amount of power and increase the temperature of the active devices, worsening the signal characteristics of the ultrasound systems. Therefore, we propose a new method of increasing the bias voltage for a specific period to solve this problem by reducing the output signal distortion of the power amplifier and decreasing the load on the active device. To compare the performance of the proposed method, we measured and compared the signals of the amplifier with the proposed technique and the amplifier only. Notably, improvement was achieved with 11.1% of the power added efficiency and 3.23% of the total harmonic distortion (THD). Additionally, the echo signal generated by the ultrasonic transducer was improved by 2.73 dB of amplitude and 0.028% of THD under the conditions of an input signal of 10 mW. Therefore, the proposed method could be useful for improving ultrasonic transmitter performance using the developed technique.
Collapse
|
13
|
XYZ Micropositioning System Based on Compliance Mechanisms Fabricated by Additive Manufacturing. ACTUATORS 2021. [DOI: 10.3390/act10040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article presents the design and implementation of a micropositioning system actuated by three piezoelectric stacks to control its displacements on XYZ axes. The use of conventional piezoelectric buzzers allows us to reduce fabrication costs. The working or mobile platform is the base for objects that will be manipulated, for example, in automated assembling. The micropositioner can be integrated into a microgripper to generate a complete manipulation system. For micropositioner fabrication, at first, Polylactic Acid (PLA) was chosen as the structural material, but after simulation and some experimental tests performed with a micropositioner made of Acrylonitrile Butadiene Styrene (ABS), it showed larger displacement (approx. 20%) due to its lower stiffness. A third test was performed with a positioner made with Polyethylene Terephthalate Glycol (PETG), obtaining an intermediate performance. The originality of this work resides in the geometrical arrangement based on thermoplastic polymer compliance mechanisms, as well as in the use of additive manufacturing to fabricate it. An experimental setup was developed to carry out experimental tests. ANSYS™ was used for simulation.
Collapse
|
14
|
Novel Bandwidth Expander Supported Power Amplifier for Wideband Ultrasound Transducer Devices. SENSORS 2021; 21:s21072356. [PMID: 33800641 PMCID: PMC8037455 DOI: 10.3390/s21072356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
Ultrasound transducer devices have their own frequency ranges, depending on the applications and specifications, due to penetration depth, sensitivity, and image resolution. For imaging applications, in particular, the transducer devices are preferable to have a wide bandwidth due to the specific information generated by the tissue or blood vessel structures. To support these ultrasound transducer devices, ultrasound power amplifier hardware with a wide bandwidth can improve the transducer performance. Therefore, we developed a new bandwidth expander circuit using specially designed switching architectures to increase the power amplifier bandwidth. The measured bandwidth of the power amplifier with the help of the bandwidth expander circuit increased by 56.9%. In addition, the measured echo bandwidths of the 15-, 20-, and 25-MHz transducer devices were increased by 8.1%, 6.0%, and 9.8%, respectively, with the help of the designed bandwidth expander circuit. Therefore, the designed architecture could help an ultrasound system hardware with a wider bandwidth, thus supporting the use of different frequency ultrasound transducer devices with a single developed ultrasound system.
Collapse
|
15
|
Generating Airborne Ultrasonic Amplitude Patterns Using an Open Hardware Phased Array. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Holographic methods from optics can be adapted to acoustics for enabling novel applications in particle manipulation or patterning by generating dynamic custom-tailored acoustic fields. Here, we present three contributions towards making the field of acoustic holography more widespread. Firstly, we introduce an iterative algorithm that accurately calculates the amplitudes and phases of an array of ultrasound emitters in order to create a target amplitude field in mid-air. Secondly, we use the algorithm to analyse the impact of spatial, amplitude and phase emission resolution on the resulting acoustic field, thus providing engineering insights towards array design. For example, we show an onset of diminishing returns for smaller than a quarter-wavelength sized emitters and a phase and amplitude resolution of eight and four divisions per period, respectively. Lastly, we present a hardware platform for the generation of acoustic holograms. The array is integrated in a single board composed of 256 emitters operating at 40 kHz. We hope that the results and procedures described within this paper enable researchers to build their own ultrasonic arrays and explore novel applications of ultrasonic holograms.
Collapse
|
16
|
Teplykh A, Zaitsev B, Semyonov A, Borodina I. The Radial Electric Field Excited Circular Disk Piezoceramic Acoustic Resonator and Its Properties. SENSORS 2021; 21:s21020608. [PMID: 33477254 PMCID: PMC7830281 DOI: 10.3390/s21020608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
A new type of piezoceramic acoustic resonator in the form of a circular disk with a radial exciting electric field is presented. The advantage of this type of resonator is the localization of the electrodes at one end of the disk, which leaves the second end free for the contact of the piezoelectric material with the surrounding medium. This makes it possible to use such a resonator as a sensor base for analyzing the properties of this medium. The problem of exciting such a resonator by an electric field of a given frequency is solved using a two-dimensional finite element method. The method for solving the inverse problem for determining the characteristics of a piezomaterial from the broadband frequency dependence of the electrical impedance of a single resonator is proposed. The acoustic and electric field inside the resonator is calculated, and it is shown that this location of electrodes makes it possible to excite radial, flexural, and thickness extensional modes of disk oscillations. The dependences of the frequencies of parallel and series resonances, the quality factor, and the electromechanical coupling coefficient on the size of the electrodes and the gap between them are calculated.
Collapse
|
17
|
You K, Choi H. Inter-Stage Output Voltage Amplitude Improvement Circuit Integrated with Class-B Transmit Voltage Amplifier for Mobile Ultrasound Machines. SENSORS 2020; 20:s20216244. [PMID: 33147757 PMCID: PMC7662991 DOI: 10.3390/s20216244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
Piezoelectric transducers are triggered by the output voltage signal of a transmit voltage amplifier (TVA). In mobile ultrasound instruments, the sensitivity of piezoelectric transducers is a critical parameter under limited power supply from portable batteries. Therefore, the enhancement of the output voltage amplitude of the amplifier under limited power supply could increase the sensitivity of the piezoelectric transducer. Several-stage TVAs are used to increase the voltage amplitude. However, inter-stage design issues between each TVA block may reduce the voltage amplitude and bandwidth because the electronic components of the amplifier are nonlinearly operated at the desired frequency ranges. To compensate for this effect, we propose a novel inter-stage output voltage amplitude improvement (OVAI) circuit integrated with a class-B TVA circuit. We performed fundamental A-mode pulse-echo tests using a 15-MHz immersion-type piezoelectric transducer to verify the design. The echo amplitude and bandwidth when using an inter-stage OVAI circuit integrated with a class-B TVA circuit (696 mVPP and 29.91%, respectively) were higher than those obtained when using only the class-B TVA circuit (576 mVPP and 24.21%, respectively). Therefore, the proposed OVAI circuit could be beneficial for increasing the output amplitude of the class-B TVA circuit for mobile ultrasound machines.
Collapse
|
18
|
Kim J, You K, Choi H. Post-Voltage-Boost Circuit-Supported Single-Ended Class-B Amplifier for Piezoelectric Transducer Applications. SENSORS 2020; 20:s20185412. [PMID: 32967294 PMCID: PMC7571019 DOI: 10.3390/s20185412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 01/18/2023]
Abstract
Piezoelectric transducers are important devices that are triggered by amplifier circuits in mobile ultrasound systems. Therefore, amplifier performance is vital because it determines the acoustic piezoelectric transducer performances. Particularly, mobile ultrasound applications have strict battery performance and current consumption requirements; hence, amplifier devices should exhibit good efficiency because the direct current (DC) voltage in the battery are provided to the supply voltages of the amplifier, thus limiting the maximum DC drain voltages of the main transistors in the amplifier. The maximum DC drain voltages are related with maximum output power if the choke inductor in the amplifier is used. Therefore, a need to improve the amplifier performance of piezoelectric transducers exists for mobile ultrasound applications. In this study, a post-voltage-boost circuit-supported class-B amplifier used for mobile ultrasound applications was developed to increase the acoustic performance of piezoelectric transducers. The measured voltage of the post-voltage-boost circuit-supported class-B amplifier (62 VP-P) is higher than that of only a class-B amplifier (50 VP-P) at 15 MHz and 100 mVP-P input. By performing the pulse-echo measurement test, the echo signal with the post-voltage-boost circuit-supported class-B amplifier (10.39 mVP-P) was also noted to be higher than that with only a class-B amplifier (6.15 mVP-P). Therefore, this designed post-voltage-boost circuit can help improve the acoustic amplitude of piezoelectric transducers used for mobile ultrasound applications.
Collapse
Affiliation(s)
- Jungsuk Kim
- Department of Biomedical Engineering, Gachon University, 191 Hambakmoe-ro, Yeonsu-Gu, Incheon 21936, Korea;
| | - Kiheum You
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, 350-27 Gumi-daero, Gumi 39253, Korea;
| | - Hojong Choi
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, 350-27 Gumi-daero, Gumi 39253, Korea;
- Correspondence: ; Tel.: +82-54-478-7782
| |
Collapse
|