1
|
Baz RO, Gherghescu G, Mustafa A, Enyedi M, Scheau C, Baz RA. The Role of CT Imaging in a Fractured Coronary Stent with Pseudoaneurysm Formation. Diagnostics (Basel) 2024; 14:840. [PMID: 38667485 PMCID: PMC11049618 DOI: 10.3390/diagnostics14080840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
We report a case of a 63-year-old male patient with multiple cardiovascular risk factors and previous myocardial infarction who was referred to the emergency department on September 2023 with symptoms and clinical and biological data consistent with an acute coronary event. A coronary angiography revealed severe ostial stenosis of the left anterior descending artery (LAD) and intrastent thrombotic occlusion in the first two segments of the LAD. Two drug-eluting stents were implanted and the patient was discharged when hemodynamically stable; however, three weeks later, he returned to the emergency department complaining of fever, anterior chest pain, dyspnea at rest, and high blood pressure values at home. High levels of troponin T, C-reactive protein, and NT-proBNP were detected and blood cultures showed methicillin-resistant Staphylococcus aureus. The computed tomography (CT) examination showed a saccular dilatation had developed between two fragments of a stent mounted at the level of the LAD, surrounded by a hematic pericardial accumulation. LAD pseudoaneurysm ablation and a double aortocoronary bypass with inverted saphenous vein autograft were performed and the patient showed a favorable postoperative evolution. In this case, surgical revascularization was proven to be the appropriate treatment strategy, demonstrating the need to choose an individualized therapeutic option depending on case-specific factors.
Collapse
Affiliation(s)
- Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania; (R.O.B.); (G.G.)
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - George Gherghescu
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania; (R.O.B.); (G.G.)
| | - Adnan Mustafa
- Department of Cardiology, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania;
| | - Mihaly Enyedi
- Department of Anatomy, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Radiology, “Victor Babes” Center for Diagnosis and Treatment, 030303 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Andrei Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania; (R.O.B.); (G.G.)
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| |
Collapse
|
2
|
Kodeboina M, Piayda K, Jenniskens I, Vyas P, Chen S, Pesigan RJ, Ferko N, Patel BP, Dobrin A, Habib J, Franke J. Challenges and Burdens in the Coronary Artery Disease Care Pathway for Patients Undergoing Percutaneous Coronary Intervention: A Contemporary Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095633. [PMID: 37174152 PMCID: PMC10177939 DOI: 10.3390/ijerph20095633] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Clinical and economic burdens exist within the coronary artery disease (CAD) care pathway despite advances in diagnosis and treatment and the increasing utilization of percutaneous coronary intervention (PCI). However, research presenting a comprehensive assessment of the challenges across this pathway is scarce. This contemporary review identifies relevant studies related to inefficiencies in the diagnosis, treatment, and management of CAD, including clinician, patient, and economic burdens. Studies demonstrating the benefits of integration and automation within the catheterization laboratory and across the CAD care pathway were also included. Most studies were published in the last 5-10 years and focused on North America and Europe. The review demonstrated multiple potentially avoidable inefficiencies, with a focus on access, appropriate use, conduct, and follow-up related to PCI. Inefficiencies included misdiagnosis, delays in emergency care, suboptimal testing, longer procedure times, risk of recurrent cardiac events, incomplete treatment, and challenges accessing and adhering to post-acute care. Across the CAD pathway, this review revealed that high clinician burnout, complex technologies, radiation, and contrast media exposure, amongst others, negatively impact workflow and patient care. Potential solutions include greater integration and interoperability between technologies and systems, improved standardization, and increased automation to reduce burdens in CAD and improve patient outcomes.
Collapse
Affiliation(s)
- Monika Kodeboina
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80138 Naples, Italy
- Clinic for Internal Medicine and Cardiology, Marien Hospital, 52066 Aachen, Germany
| | - Kerstin Piayda
- Cardiovascular Center Frankfurt, 60389 Frankfurt, Germany
- Department of Cardiology and Vascular Medicine, Medical Faculty, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | - Jennifer Franke
- Cardiovascular Center Frankfurt, 60389 Frankfurt, Germany
- Philips Chief Medical Office, 22335 Hamburg, Germany
| |
Collapse
|
3
|
Patel S, Patel KB, Patel Z, Konat A, Patel A, Doshi JS, Chokshi P, Patel D, Sharma K, Amdani MM, Shah DB, Dholu U, Patel M. Evolving Coronary Stent Technologies - A Glimpse Into the Future. Cureus 2023; 15:e35651. [PMID: 37009355 PMCID: PMC10065169 DOI: 10.7759/cureus.35651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
One of the most widely accepted forms of treatment for coronary artery disease (CAD) is the implementation of stents into the vessel. This area of research is constantly evolving, ranging from bare-metal stents through drug-eluting stents and, more recently, approaching bioresorbable stents and polymer-free stents. This article reviews the evolution of all these devices and emphasizes how they might be further evolved to provide an optimal coronary stent and overcome unsolved challenges in stent development. We thoroughly evaluated a number of published studies in order to advance coronary stent technologies. Additionally, we looked for various literature that highlighted the inadequacies of the coronary stents that are currently available and how they might be modified to create the optimum coronary stent. Coronary stents have significantly improved clinical outcomes in interventional cardiology, but there are still a number of drawbacks, including an persisted risk of thrombosis due to endothelial injury and in-stent restenosis. Gene eluting stents (GES) and customized coronary stents with self-reporting stent sensors are appealing alternatives to existing stent approaches. Considering the adequacy of these gene eluting stents (GES), customized coronary stents produced by novel 4D printing technologies and integrated self-reporting stent sensors should be assumed for anticipating future advancements to optimal coronary stent devices; however, more interventional evidence is required to determine the future prospects of these stent innovations.
Collapse
|
4
|
Seo HJ, Rhim WK, Baek SW, Kim JY, Kim DS, Han DK. Endogenous stimulus-responsive nitric oxide releasing bioactive liposome for a multilayered drug-eluting balloon. Biomater Sci 2023; 11:916-930. [PMID: 36533852 DOI: 10.1039/d2bm01673g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug-eluting balloon (DEB) system has been widely utilized for percutaneous coronary intervention (PCI), treating atherosclerosis to overcome the limitations of cardiovascular stents. With the anti-proliferative drug, everolimus (EVL), nitric oxide (NO) plays a key bioregulator role to facilitate the angiogenesis of endothelial cells (ECs) and inhibit the cell proliferation of smooth muscle cells (SMCs) in the lesions of cardiovascular diseases. Due to the very short lifetime and limited exposure area of NO in the body, the continuous release and efficient delivery of NO must be carefully considered. In this respect, a liposome-containing disulfide bonding group was introduced as a delivery vehicle of EVL and NO with the continuous release of NO via successive reaction cycles with GSH and SNAP in the blood vessel without the need for exogenous stimulations. With a multilayer coating platform consisting of a polyvinylpyrrolidone (PVP)/EVL-laden liposome with NO (EVL-NO-Lipo)/PVP, we precluded the loss of the EVL-encapsulated liposome with NO release during the transition time and maximized the transfer rate from the surface of DEB to the tissues. The sustained release of NO was monitored using a nitric oxide analyzer (NOA), and the synergistic bioactivities of EVL and NO were proved in EC and SMC with angiogenesis and cell proliferation-related assays. From the results of hemocompatibility and ex vivo studies, the feasibility was provided for future in vivo applications of the multilayer-coated DEB system.
Collapse
Affiliation(s)
- Hyo Jeong Seo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.,Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.,Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|