1
|
García A, Diez P, Rus G, Callejas A, Torres J. Reliability and robustness of a novel preclinical torsional wave-based device for stiffness evaluation. Sci Rep 2024; 14:16461. [PMID: 39013962 PMCID: PMC11252416 DOI: 10.1038/s41598-024-66661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
In this work, we present a novel preclinical device utilizing Torsional Wave Elastography (TWE). It comprises a rotational actuator element and a piezoceramic receiver ring circumferentially aligned. Both allow the transmission of shear waves that interact with the tissue before being received. Our main objective is to demonstrate and characterize the reliability, robustness, and accuracy of the device for characterizing the stiffness of elastic materials and soft tissues. Experimental tests are performed using two sets of tissue mimicking phantoms. The first set consists of calibrated CIRS gels with known stiffness value, while the second test uses non-calibrated manufactured phantoms. Our experimental observations show that the proposed device consistently and repeatably quantifies the stiffness of elastic materials with high accuracy. Furthermore, comparison with established techniques demonstrates a very high correlation (> 95%), supporting the potential medical application of this technology. The results obtained pave the way for a cross-sectional study aiming to investigate the correlation between gestational age and cervical elastic properties during pregnancy.
Collapse
Affiliation(s)
| | | | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 Group, Instituto de Investigación Biosanitaria, ibs., Granada, 18001, Spain
| | - Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain.
- TEC-12 Group, Instituto de Investigación Biosanitaria, ibs., Granada, 18001, Spain.
| | - Jorge Torres
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, F-69003, France
| |
Collapse
|
2
|
Callejas A, Faris I, Torres J, Rus G. Nonlinear fourth-order elastic characterization of the cornea using torsional wave elastography. Phys Eng Sci Med 2023; 46:1489-1501. [PMID: 37642939 DOI: 10.1007/s13246-023-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Measuring the mechanical nonlinear properties of the cornea remains challenging due to the lack of consensus in the methodology and in the models that effectively predict its behaviour. This study proposed developing a procedure to reconstruct nonlinear fourth-order elastic properties of the cornea based on a mathematical model derived from the theory of Hamilton et al. and using the torsional wave elastography (TWE) technique. In order to validate its diagnostic capability of simulated pathological conditions, two different groups were studied, non-treated cornea samples (n=7), and ammonium hydroxide ([Formula: see text]) treated samples (n=7). All the samples were measured in-plane by a torsional wave device by increasing IOP from 5 to 25 mmHg with 5 mmHg steps. The results show a nonlinear variation of the shear wave speed with the IOP, with higher values for higher IOPs. Moreover, the shear wave speed values of the control group were higher than those of the treated group. The study also revealed significant differences between the control and treated groups for the Lamé parameter [Formula: see text] (25.9-6.52 kPa), third-order elastic constant A (215.09-44.85 kPa), and fourth-order elastic constant D (523.5-129.63 kPa), with p-values of 0.010, 0.024, and 0.032, respectively. These findings demonstrate that the proposed procedure can distinguish between healthy and damaged corneas, making it a promising technique for detecting diseases associated with IOP alteration, such as corneal burns, glaucoma, or ocular hypertension.
Collapse
Affiliation(s)
- Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain.
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain.
| | - Inas Faris
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
| | - Jorge Torres
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
| | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, 18001, Spain
| |
Collapse
|
3
|
Ojha AK, Rajasekaran R, Hansda AK, Singh A, Dutta A, Seesala VS, Das S, Dogra N, Sharma S, Goswami R, Chaudhury K, Dhara S. Biodegradable Multi-layered Silk Fibroin-PCL Stent for the Management of Cervical Atresia: In Vitro Cytocompatibility and Extracellular Matrix Remodeling In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39099-39116. [PMID: 37579196 DOI: 10.1021/acsami.3c06585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Cervical atresia is a rare congenital Müllerian duct anomaly that manifests as the absence or deformed nonfunctional presence of the cervix. Herein, a multi-layered biodegradable stent is fabricated using a homogeneous blend of silk fibroin with polycaprolactone using hexafluoroisopropanol as a common solution. Briefly, a concentric cylinder of 3D honeycomb layer is sandwiched within electrospun sheets for fixing at the cervico-uterine junction to pave the way of cervical reconstruction. An average length of 40 mm with 3 mm diameter is fabricated for the hybrid stent design. SEM evidences an evenly distributed pore architecture of the electrospun layer, and mechanical characterization of stent reveals a tensile strength of 1.7 ± 0.2 MPa, with a Young's modulus of 5.9 ± 0.1 MPa. Physico-chemical characterization confirms the presence of silk fibroin and poly caprolactone within the engineered stent. Following 14 days of pepsin enzymatic degradation, 18% degradation and a contact angle measurement of 97° are observed. In vitro cytocompatibility studies are performed using site-specific primary human cervical squamous, columnar epithelial cells, and human endometrial stromal cells. The study demonstrates non-cytotoxic cells' viability (no significant toxicity), improved cell anchoring, adherence among the stent layers, and proliferation in the 3D microenvironment. Furthermore, in vivo subcutaneous studies in the rodent model indicate that the implanted stent undergoes constructive remodeling, neo-tissue creation, neo-vasculature formation, and re-epithelialization while maintaining patency for 2 months.
Collapse
Affiliation(s)
- Atul Kumar Ojha
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ragavi Rajasekaran
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Armaan Kunwar Hansda
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Apoorva Singh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abir Dutta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Venkata Sundeep Seesala
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Samir Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Nantu Dogra
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunita Sharma
- Institute of Reproductive Medicine, Salt Lake 700106, Kolkata, India
| | - Ritobrata Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Ge W, Brooker G, Mogra R, Hyett J. Measured Hyperelastic Properties of Cervical Tissue with Shear-Wave Elastography. SENSORS 2021; 22:s22010302. [PMID: 35009856 PMCID: PMC8749884 DOI: 10.3390/s22010302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
The nonlinear mechanical behaviour of cervical tissue causes unpredictable changes in measured elastograms when pressure is applied. These uncontrolled variables prevent the reliable measurement of tissue elasticity in a clinical setting. Measuring the nonlinear properties of tissue is difficult due to the need for both shear modulus and strain to be taken simultaneously. A simulation-based method is proposed in this paper to resolve this. This study describes the nonlinear behaviour of cervical tissue using the hyperelastic material models of Demiray–Fung and Veronda–Westmann. Elastograms from 33 low-risk patients between 18 and 22 weeks gestation were obtained. The average measured properties of the hyperelastic material models are: Demiray–Fung—A1α = 2.07 (1.65–2.58) kPa, α = 6.74 (4.07–19.55); Veronda–Westmann—C1C2 = 4.12 (3.24–5.04) kPa, C2 = 4.86 (2.86–14.28). The Demiray–Fung and Veronda–Westmann models performed similarly in fitting to the elastograms with an average root mean square deviation of 0.41 and 0.47 ms−1, respectively. The use of hyperelastic material models to calibrate shear-wave speed measurements improved the consistency of measurements. This method could be applied in a large-scale clinical setting but requires updated models and higher data resolution.
Collapse
Affiliation(s)
- Weirong Ge
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| | - Graham Brooker
- Australian Centre for Field Robotics, Rose Street Bldg, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Ritu Mogra
- Royal Prince Alfred Hospital, 50 Missenden Rd., Camperdown, NSW 2050, Australia; (R.M.); (J.H.)
| | - Jon Hyett
- Royal Prince Alfred Hospital, 50 Missenden Rd., Camperdown, NSW 2050, Australia; (R.M.); (J.H.)
| |
Collapse
|
5
|
Zeybek B, Li S, Silberschmidt VV, Liu Y. Wound contraction under negative pressure therapy measured with digital image correlation and finite-element analysis in tissue phantoms and wound models. Med Eng Phys 2021; 98:104-114. [PMID: 34848029 DOI: 10.1016/j.medengphy.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
The purpose of this study is to demonstrate the capabilities of finite-element (FE) models to predict contraction of wounds managed with negative pressure wound therapy (NPWT). The features of wounds and surrounding tissues were analysed to gain insights into the mechanical effects of NPWT on them. 3D digital image correlation (DIC) measurement of soft tissue phantoms was used to investigate the effect of wound thickness, size, and shape, which were further compared with results of FE simulations. It was noticed that with an increased NP level the difference between DIC and FE in wound contraction became more pronounced, particularly for the thick wounds. In addition, the locations of the wounds were evaluated to predict their contraction characteristics, based on surrounding tissue structures, in 3D using the developed FE models. It was demonstrated that features and location of wounds influenced their deformations differently for the same pressure levels. Overall, this study, involving a combined experimental and computational approach, allowed the important insights into mechanical effects of NPWT.
Collapse
Affiliation(s)
- Begum Zeybek
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, United Kingdom
| | - Simin Li
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, United Kingdom
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, United Kingdom
| | - Yang Liu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, United Kingdom; Centre of Biological Engineering, Loughborough University, United Kingdom.
| |
Collapse
|
6
|
Callejas A, Melchor J, Faris IH, Rus G. Viscoelastic model characterization of human cervical tissue by torsional waves. J Mech Behav Biomed Mater 2020; 115:104261. [PMID: 33340778 DOI: 10.1016/j.jmbbm.2020.104261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 10/10/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
The understanding of changes in the viscoelastic properties of cervical tissue during the gestation process is a challenging problem. In this work, we explore the importance of considering the multilayer nature (epithelial and connective layers) of human cervical tissue for characterizing the viscoelastic parameters from torsional waves. For this purpose, torsional wave propagations are simulated in three multilayer cervical tissue models (pure elastic, Kelvin-Voigt (KV) and Maxwell) using the finite difference time domain method. High-speed camera measurements have been carried out in tissue-mimicking phantoms in order to obtain the boundary conditions of the numerical simulations. Finally, a parametric modeling study through a probabilistic inverse procedure was performed to rank the most plausible rheological model and to reconstruct the viscoelastic parameters. The procedure consist in comparing the experimental signals obtained in human cervical tissues using the Torsional Wave Elastography (TWE) technique with the synthetic signals from the numerical models. It is shown that the rheological model that best describes the nature of cervical tissue is the Kelvin-Voigt model. Once the most plausible model has been selected, the stiffness and viscosity parameters have been reconstructed of the epithelial and connective layers for the measurements of the 18 pregnant women, along with the thickness of the epithelial layer.
Collapse
Affiliation(s)
- A Callejas
- Department of Structural Mechanics, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain.
| | - J Melchor
- Department of Structural Mechanics, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain; Excellence Research Unit "Modelling Nature" (MNat) University of Granada, Granada, Spain
| | - Inas H Faris
- Department of Structural Mechanics, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - G Rus
- Department of Structural Mechanics, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain; Excellence Research Unit "Modelling Nature" (MNat) University of Granada, Granada, Spain
| |
Collapse
|