1
|
Cai H, Yuan R, Huang S, Huang Y, Lin C, Lin Y, Luo F, Lin Z, Wang L. Sensitive trypsin sensor based on the regulation of microscale ionic current rectification by the selectivity hydrolysis of hydrogel filled in microchannel. Talanta 2025; 285:127422. [PMID: 39709827 DOI: 10.1016/j.talanta.2024.127422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Filling the microchannel with negatively charged hydrogel can exhibit microsacle ion current rectification (ICR) behavior, which is attributed to the space negative charge and structural asymmetry of hydrogel. In this study, this character had been applied to develop a trypsin sensor for the first time. A hydrogel synthesized with bovine serum albumin (BSA) and glyoxal (BSAG hydrogel) was filled at the tip of microchannel firstly. Subsequently, the BSAG hydrogel-filled microchannel was immersed in a trypsin solution to hydrolyze the BSA within the BSAG hydrogel. This process changes the space charge density and pore size of the BSAG hydrogel-filled microchannel, leading to a change in microscale ICR, which can be used for quantifying trypsin. Then the key parameters affecting the sensing performance such as the concentration of BSA, strength of the electrolyte, pH and reaction time were optimized. The detection range was from 10.0 ng/mL to 100 μg/mL with a detection limit as low as 2.55 ng/mL (S/N = 3). Due to the distinctive three-dimensional pore structure of the hydrogel and the specificity of trypsin for BSA hydrolysis, the sensor exhibits high sensitivity and specificity, as well as remarkable reproducibility and stability. This sensor has been effectively used to measure trypsin levels in human serum samples.
Collapse
Affiliation(s)
- Huabin Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Runhao Yuan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shaokun Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yanling Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Yue Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Xiamen Hospital, Fudan University, Xiamen, 361015, China.
| |
Collapse
|
2
|
Wang T, Ding J, Chen Z, Zhang Z, Rong Y, Li G, He C, Chen X. Injectable, Adhesive Albumin Nanoparticle-Incorporated Hydrogel for Sustained Localized Drug Delivery and Efficient Tumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9868-9879. [PMID: 38349713 DOI: 10.1021/acsami.3c18306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Injectable hydrogels are receiving increasing attention as local depots for sustained anticancer drug delivery. However, most current hydrogel-based carriers lack tissue-adhesive ability, a property that is important for the immobilization of drug-loaded systems at tumor sites to increase local drug concentration. In this study, we developed a paclitaxel (PTX)-loaded injectable hydrogel with firm tissue adhesion for localized tumor therapy. PTX-loaded bovine serum albumin (BSA) nanoparticles (PTX@BN) were prepared, and the drug-loaded hydrogel was then fabricated by cross-linking PTX@BN with o-phthalaldehyde (OPA)-terminated 4-armed poly(ethylene glycol) (4aPEG-OPA) via a condensation reaction between OPA and the amines in BSA. The hydrogel showed firm adhesion to various organs and tumor tissues ex vivo due to the condensation reaction of unreacted OPA groups and amines in the tissues. The PTX-loaded nanocomposite hydrogels sustained PTX release over 30 days following the Korsmeyer-Peppas model and exhibited notable inhibition activities against mouse C26 colon and 4T1 breast cancer cells in vitro. Following peritumoral injection into mice with C26 or 4T1 tumors, the PTX@BN-loaded hydrogel significantly enhanced the antitumor efficacy and prolonged animal survival time compared to free PTX solutions with low systemic toxicity. Therefore, the adhesive, PTX-loaded nanocomposite hydrogels have the potential for efficient localized tumor therapy.
Collapse
Affiliation(s)
- Tianran Wang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhixiong Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Gao Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Li G, Liu C, Zhang X, Zhai P, Lai X, Jiang W. Low temperature synthesis of carbon dots in microfluidic chip and their application for sensing cefquinome residues in milk. Biosens Bioelectron 2023; 228:115187. [PMID: 36893719 DOI: 10.1016/j.bios.2023.115187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
In this study, the N-doped carbon dots were continuously synthesized by a facile microfluidic strategy at 90 °C, and their quantum yields reached 19.2%. The characteristics of the obtained carbon dots could be real-time monitored in order to synthesize carbon dots with specific properties. By incorporating the carbon dots into a well-established enzymatic cascade amplification system, an inner filter effect-based fluorescence immunoassay was set up for ultrasensitive detection of cefquinome residues in milk samples. The developed fluorescence immunoassay provided a low detection limit of 0.78 ng/mL, which satisfied the maximum residue limit set by authorities. The fluorescence immunoassay had an 50% inhibition concentration of 0.19 ng/mL against cefquinome and showed a good linear relationship from 0.013 ng/mL to 1.52 ng/mL. While, the average recovery values ranged from 77.8% to 107.8% in spiked milk samples, with relative standard deviations ranging from 6.8% to 10.9%. Compared with conventional methods, the microfluidic chip was more flexible on carbon dots synthesis and the developed fluorescence immunoassay was more sensitive and eco-friendlier for ultra-trace cefquinome residue analysis.
Collapse
Affiliation(s)
- Guangming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, 130022, China
| | - Chen Liu
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Peng Zhai
- Department of Nutrition and Food Hygiene, School of Public Health, Shenzhen University, Shenzhen, 518060, China
| | - Xinyi Lai
- Department of Nutrition and Food Hygiene, School of Public Health, Shenzhen University, Shenzhen, 518060, China
| | - Wenxiao Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Shenzhen University, Shenzhen, 518060, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
4
|
Yang H, Jiang L, Guo K, Xiang N. Static droplet array for the synthesis of nonspherical microparticles. Electrophoresis 2023; 44:563-572. [PMID: 36593724 DOI: 10.1002/elps.202200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
We reported a manually operated static droplet array (SDA)-based device for the synthesis of nonspherical microparticles with different shapes. The improved SDA structure and reversible bonding between poly(dimethylsiloxane) (PDMS) were used in the device for the large-scale synthesis and rapid extraction of nonspherical microparticles. To understand the device physics, the effects of flow rate, SDA well size, and shape on droplet generation performances were explored. The results indicated that droplet generation in SDA structures was insensitive to the flow rate, and monodisperse droplets were generated by the SDA-based device through manually pushing the syringe. Finally, we integrated four kinds of SDA structures in one device and successfully realized the synthesis and extraction of nonspherical microparticles with different shapes and materials. Our SDA-based device offers numerous advantages, such as simple manual operation, low equipment cost, controllable microparticle shapes and sizes, and large-scale production. Thus, it holds the potential to be used as a flexible tool for the production of nonspherical microparticles.
Collapse
Affiliation(s)
- Hang Yang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
5
|
Esposito TVF, Stütz H, Rodríguez-Rodríguez C, Bergamo M, Charles L, Geczy R, Blackadar C, Kutter JP, Saatchi K, Häfeli UO. Preparation of Heat-Denatured Macroaggregated Albumin for Biomedical Applications Using a Microfluidics Platform. ACS Biomater Sci Eng 2021; 7:2823-2834. [PMID: 33826291 DOI: 10.1021/acsbiomaterials.1c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Albumin is widely used in pharmaceutical applications to alter the pharmacokinetic profile, improve efficacy, or decrease the toxicity of active compounds. Various drug delivery systems using albumin have been reported, including microparticles. Macroaggregated albumin (MAA) is one of the more common forms of albumin microparticles, which is predominately used for lung perfusion imaging when labeled with radionuclide technetium-99m (99mTc). These microparticles are formed by heat-denaturing albumin in a bulk solution, making it very challenging to control the size and dispersity of the preparations (coefficient of variation, CV, ∼50%). In this work, we developed an integrated microfluidics platform to create more tunable and precise MAA particles, the so-called microfluidic-MAA (M2A2). The microfluidic chips, prepared using off-stoichiometry thiol-ene chemistry, consist of a flow-focusing region followed by an extended and water-heated curing channel (85 °C). M2A2 particles with diameters between 70 and 300 μm with CVs between 10 and 20% were reliably prepared by adjusting the flow rates of the dispersed and continuous phases. To demonstrate the pharmaceutical utility of M2A2, particles were labeled with indium-111 (111In) and their distribution was assessed in healthy mice using nuclear imaging. 111In-M2A2 behaved similarly to 99mTc-MAA, with lung uptake predominately observed early on followed by clearance over time by the reticuloendothelial and renal systems. Our microfluidic chip represents an elegant and controllable method to prepare albumin microparticles for biomedical applications.
Collapse
Affiliation(s)
- Tullio V F Esposito
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Helene Stütz
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Life Science, IMC University of Applied Sciences, Piaristengasse 1, 3500 Krems, Austria
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Physics and Astronomy, Faculty of Science, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marta Bergamo
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lovelyn Charles
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Reka Geczy
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jörg P Kutter
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|