1
|
Deng S, Li Y, Li S, Yuan S, Zhu H, Bai J, Xu J, Peng L, Li T, Zhang T. A multifunctional flexible sensor based on PI-MXene/SrTiO 3 hybrid aerogel for tactile perception. Innovation (N Y) 2024; 5:100596. [PMID: 38510069 PMCID: PMC10952077 DOI: 10.1016/j.xinn.2024.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/25/2024] [Indexed: 03/22/2024] Open
Abstract
The inadequacy of tactile perception systems in humanoid robotic manipulators limits the breadth of available robotic applications. Here, we designed a multifunctional flexible tactile sensor for robotic fingers that provides capabilities similar to those of human skin sensing modalities. This sensor utilizes a novel PI-MXene/SrTiO3 hybrid aerogel developed as a sensing unit with the additional abilities of electromagnetic transmission and thermal insulation to adapt to certain complex environments. Moreover, polyimide (PI) provides a high-strength skeleton, MXene realizes a pressure-sensing function, and MXene/SrTiO3 achieves both thermoelectric and infrared radiation response behaviors. Furthermore, via the pressure response mechanism and unsteady-state heat transfer, these aerogel-derived flexible sensors realize multimodal sensing and recognition capabilities with minimal cross-coupling. They can differentiate among 13 types of hardness and four types of material from objects with accuracies of 94% and 85%, respectively, using a decision tree algorithm. In addition, based on the infrared radiation-sensing function, a sensory array was assembled, and different shapes of objects were successfully recognized. These findings demonstrate that this PI-MXene/SrTiO3 aerogel provides a new concept for expanding the multifunctionality of flexible sensors such that the manipulator can more closely reach the tactile level of the human hand. This advancement reduces the difficulty of integrating humanoid robots and provides a new breadth of application scenarios for their possibility.
Collapse
Affiliation(s)
- Shihao Deng
- Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Yue Li
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Shengzhao Li
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Shen Yuan
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Hao Zhu
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Ju Bai
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Jingyi Xu
- Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Lu Peng
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Tie Li
- Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- Jiangxi Institute of Nanotechnology, 278 Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Ting Zhang
- Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China
- i-lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
| |
Collapse
|
2
|
Shi Y, Shen G. Haptic Sensing and Feedback Techniques toward Virtual Reality. RESEARCH (WASHINGTON, D.C.) 2024; 7:0333. [PMID: 38533183 PMCID: PMC10964227 DOI: 10.34133/research.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/10/2024] [Indexed: 03/28/2024]
Abstract
Haptic interactions between human and machines are essential for information acquisition and object manipulation. In virtual reality (VR) system, the haptic sensing device can gather information to construct virtual elements, while the haptic feedback part can transfer feedbacks to human with virtual tactile sensation. Therefore, exploring high-performance haptic sensing and feedback interface imparts closed-loop haptic interaction to VR system. This review summarizes state-of-the-art VR-related haptic sensing and feedback techniques based on the hardware parts. For the haptic sensor, we focus on mechanism scope (piezoresistive, capacitive, piezoelectric, and triboelectric) and introduce force sensor, gesture translation, and touch identification in the functional view. In terms of the haptic feedbacks, methodologies including mechanical, electrical, and elastic actuators are surveyed. In addition, the interactive application of virtual control, immersive entertainment, and medical rehabilitation is also summarized. The challenges of virtual haptic interactions are given including the accuracy, durability, and technical conflicts of the sensing devices, bottlenecks of various feedbacks, as well as the closed-loop interaction system. Besides, the prospects are outlined in artificial intelligence of things, wise information technology of medicine, and multimedia VR areas.
Collapse
Affiliation(s)
- Yuxiang Shi
- School of Integrated Circuits and Electronics,
Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics,
Beijing Institute of Technology, Beijing 102488, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics,
Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics,
Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
3
|
Seeling P, Reisslein M, Fitzek FHP. Real-Time Compression for Tactile Internet Data Streams. SENSORS (BASEL, SWITZERLAND) 2021; 21:1924. [PMID: 33803484 PMCID: PMC7967243 DOI: 10.3390/s21051924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
The Tactile Internet will require ultra-low latencies for combining machines and humans in systems where humans are in the control loop. Real-time and perceptual coding in these systems commonly require content-specific approaches. We present a generic approach based on deliberately reduced number accuracy and evaluate the trade-off between savings achieved and errors introduced with real-world data for kinesthetic movement and tele-surgery. Our combination of bitplane-level accuracy adaptability with perceptual threshold-based limits allows for great flexibility in broad application scenarios. Combining the attainable savings with the relatively small introduced errors enables the optimal selection of a working point for the method in actual implementations.
Collapse
Affiliation(s)
- Patrick Seeling
- Department of Computer Science, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Martin Reisslein
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706, USA;
| | - Frank H. P. Fitzek
- Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, 01062 Dresden, Germany;
| |
Collapse
|