Smart Search System of Autonomous Flight UAVs for Disaster Rescue.
SENSORS 2021;
21:s21206810. [PMID:
34696023 PMCID:
PMC8537596 DOI:
10.3390/s21206810]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022]
Abstract
UAVs (Unmanned Aerial Vehicles) have been developed and adopted for various fields including military, IT, agriculture, construction, and so on. In particular, UAVs are being heavily used in the field of disaster relief thanks to the fact that UAVs are becoming smaller and more intelligent. Search for a person in a disaster site can be difficult if the mobile communication network is not available, and if the person is in the GPS shadow area. Recently, the search for survivors using unmanned aerial vehicles has been studied, but there are several problems as the search is mainly using images taken with cameras (including thermal imaging cameras). For example, it is difficult to distinguish a distressed person from a long distance especially in the presence of cover. Considering these challenges, we proposed an autonomous UAV smart search system that can complete their missions without interference in search and tracking of castaways even in disaster areas where communication with base stations is likely to be lost. To achieve this goal, we first make UAVs perform autonomous flight with locating and approaching the distressed people without the help of the ground control server (GCS). Second, to locate a survivor accurately, we developed a genetic-based localization algorithm by detecting changes in the signal strength between distress and drones inside the search system. Specifically, we modeled our target platform with a genetic algorithm and we re-defined the genetic algorithm customized to the disaster site’s environment for tracking accuracy. Finally, we verified the proposed search system in several real-world sites and found that it successfully located targets with autonomous flight.
Collapse