1
|
Matsuguchi M, Horio K, Uchida A, Kakunaka R, Shiba S. A Flexible Ammonia Gas Sensor Based on a Grafted Polyaniline Grown on a Polyethylene Terephthalate Film. SENSORS (BASEL, SWITZERLAND) 2024; 24:3695. [PMID: 38894485 PMCID: PMC11175204 DOI: 10.3390/s24113695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
A novel NH3 gas sensor is introduced, employing polyaniline (PANI) with a unique structure called a graft film. The preparation method was simple: polydopamine (PD) was coated on a flexible polyethylene terephthalate (PET) film and PANI graft chains were grown on its surface. This distinctive three-layer sensor showed a response value of 12 for 50 ppm NH3 in a dry atmosphere at 50 °C. This value surpasses those of previously reported sensors using structurally controlled PANI films. Additionally, it is on par with sensors that combine PANI with metal oxide semiconductors or carbon materials, the high sensitivity of which have been reported. To confirm our film's potential as a flexible sensor, the effect of bending on the its characteristics was investigated. This revealed that although bending decreased the response value, it had no effect on the response time or recovery. This indicated that the sensor film itself was not broken by bending and had sufficient mechanical strength.
Collapse
Affiliation(s)
- Masanobu Matsuguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Kaito Horio
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Atsuya Uchida
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Rui Kakunaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Shunsuke Shiba
- Advanced Materials Research Laboratory, NiSiNa Materials Co., Ltd., 2-6-20-3, Kitagata, Kita-ku, Okayama 700-0803, Japan
| |
Collapse
|
2
|
Bibi A, Santiago KS, Yeh JM, Chen HH. Valorization of Agricultural Waste as a Chemiresistor H 2S-Gas Sensor: A Composite of Biodegradable-Electroactive Polyurethane-Urea and Activated-Carbon Composite Derived from Coconut-Shell Waste. Polymers (Basel) 2023; 15:685. [PMID: 36771986 PMCID: PMC9920131 DOI: 10.3390/polym15030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In this study, a high-performance H2S sensor that operates at RT was successfully fabricated using biodegradable electroactive polymer-polyurethane-urea (PUU) and PUU-activated-carbon (AC) composites as sensitive material. The PUU was synthesized through the copolymerization of biodegradable polycaprolactone diol and an electroactive amine-capped aniline trimer. AC, with a large surface area of 1620 m2/g and a pore diameter of 2 nm, was derived from coconut-shell waste. The composites, labeled PUU-AC1 and PUU-AC3, were prepared using a physical mixing method. The H2S-gas-sensing performance of PUU-AC0, PUU-AC1, and PUU-AC3 was evaluated. It was found that the PUU sensor demonstrated good H2S-sensing performance, with a sensitivity of 0.1269 ppm-1 H2S. The H2S-gas-sensing results indicated that the PUU-AC composites showed a higher response, compared with PUU-AC0. The enhanced H2S-response of the PUU-AC composites was speculated to be due to the high surface-area and abounding reaction-sites, which accelerated gas diffusion and adsorption and electron transfer. When detecting trace levels of H2S gas at 20 ppm, the sensitivity of the sensors based on PUU-AC1 and PUU-AC3 increased significantly. An observed 1.66 and 2.42 times' enhancement, respectively, in the sensors' sensitivity was evident, compared with PUU-AC0 alone. Moreover, the as-prepared sensors exhibited significantly high selectivity toward H2S, with minimal to almost negligible responses toward other gases, such as SO2, NO2, NH3, CO, and CO2.
Collapse
Affiliation(s)
- Aamna Bibi
- Department of Chemistry, Center for Nanotechnology and R & D Center for Membrane Technology at Chung Yuan Christian University, Chung Li 32023, China
| | - Karen S. Santiago
- Department of Chemistry, College of Science, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
| | - Jui-Ming Yeh
- Department of Chemistry, Center for Nanotechnology and R & D Center for Membrane Technology at Chung Yuan Christian University, Chung Li 32023, China
| | - Hsui-Hui Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 10608, China
| |
Collapse
|
3
|
Kroutil J, Laposa A, Povolny V, Klimsa L, Husak M. Gas Sensor with Different Morphology of PANI Layer. SENSORS (BASEL, SWITZERLAND) 2023; 23:1106. [PMID: 36772147 PMCID: PMC9920720 DOI: 10.3390/s23031106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
This work presents the design of a polymer-film-based sensor for gas detection. Different types of polyaniline are used as active layers. The advantages of resistive sensors with PANI layers are easy preparation and low production cost. At room temperature, polymer films have a high sensitivity to gas concentrations. The developed sensor works on the idea of electrical resistance shifting with gas concentration. Three different polymerization solutions are employed to synthesize the polyaniline (PANI) active layers (aqueous solution, sulfuric acid solution, and acetic acid solution). Active layers are evaluated in a controlled environment for their ability to detect ammonia, carbon monoxide, nitrogen monoxide, acetone, toluene, and relative humidity in synthetic air. PANI layers polymerized in acetic acid solutions exhibit good sensitivity toward ammonia.
Collapse
Affiliation(s)
- Jiri Kroutil
- Department of Microelectronics, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic
| | - Alexandr Laposa
- Department of Microelectronics, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic
| | - Vojtech Povolny
- Department of Microelectronics, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic
| | - Ladislav Klimsa
- Department of Material Analysis, FZU—Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague, Czech Republic
| | - Miroslav Husak
- Department of Microelectronics, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic
| |
Collapse
|
4
|
Setiyanto H, Purwaningsih DR, Saraswaty V, Mufti N, Zulfikar MA. Highly selective electrochemical sensing based on electropolymerized ion imprinted polyaniline (IIPANI) on a bismuth modified carbon paste electrode (CPE-Bi) for monitoring Nickel(ii) in river water. RSC Adv 2022; 12:29554-29561. [PMID: 36320738 PMCID: PMC9574646 DOI: 10.1039/d2ra05196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Electrochemical sensors based on ion-imprinting polymers have emerged as an effective analytical tool for heavy metal tracking. This study describes a simple and facile technique for manufacturing a highly selective and sensitive electrode using an ion imprinting polymer on a bismuth-modified carbon paste electrode. The developed sensor applied aniline as a functional monomer and was used for tracking Ni(ii) ions. The proposed sensor was thoroughly characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse striping anodic voltammetry. The analytical evaluation showed that the proposed sensor has a linear dynamic range (R 2 = 0.999) for the Ni(ii) concentration range of 0.01 to 1 μM and a limit of detection value of 0.00482 μM. The proposed sensor showed excellent performance when tested for tracking Ni(ii) ions in the presence of interfering ions (Cd(ii), Co(ii), Cu(ii), and Zn(ii) ions) at a 1000-fold higher concentration. When the proposed sensor was tested for tracking Ni(ii) concentration in an actual river sample, our modified sensor showed similar results compared to the atomic absorption spectroscopy evaluation (p > 0.05, n = 3). In summary, our proposed sensor is promising for monitoring Ni(ii) ions in the aquatic environment.
Collapse
Affiliation(s)
- Henry Setiyanto
- Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10 Bandung Indonesia
| | - Dwi Ratih Purwaningsih
- Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10 Bandung Indonesia
| | - Vienna Saraswaty
- Research Center for Environmental and Clean Technology, Research and Innovation Agency Republic of Indonesia Kawasan Puspiptek Building 820 Tangerang Banten Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Widya Mandala Catholic University Jl. Kalijudan 37 Surabaya 60114 Indonesia
| | - Nandang Mufti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang Jl. Semarang 5 Malang 65145 Indonesia
| | - Muhammad Ali Zulfikar
- Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10 Bandung Indonesia
| |
Collapse
|
5
|
Korent A, Trafela Š, Soderžnik KŽ, Samardžija Z, Šturm S, Rožman KŽ. Au-decorated electrochemically synthesised polyaniline-based sensory platform for amperometric detection of aqueous ammonia in biological fluids. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Recent Progress, Challenges, and Trends in Polymer-Based Sensors: A Review. Polymers (Basel) 2022; 14:polym14112164. [PMID: 35683835 PMCID: PMC9182651 DOI: 10.3390/polym14112164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Polymers are long-chain, highly molecular weight molecules containing large numbers of repeating units within their backbone derived from the product of polymerization of monomeric units. The materials exhibit unique properties based on the types of bonds that exist within their structures. Among these, some behave as rubbers because of their excellent bending ability, lightweight nature, and shape memory. Moreover, their tunable chemical, structural, and electrical properties make them promising candidates for their use as sensing materials. Polymer-based sensors are highly utilized in the current scenario in the public health sector and environment control due to their rapid detection, small size, high sensitivity, and suitability in atmospheric conditions. Therefore, the aim of this review article is to highlight the current progress in polymer-based sensors. More importantly, this review provides general trends and challenges in sensor technology based on polymer materials.
Collapse
|
7
|
Shah AUHA, Zia S, Rahman G, Bilal S. Performance Improvement of Gold Electrode towards Methanol Electrooxidation in Akaline Medium: Enhanced Current Density Achieved with Poly(aniline- co-2-hydroxyaniline) Coating at Low Overpotential. Polymers (Basel) 2022; 14:polym14020305. [PMID: 35054710 PMCID: PMC8780982 DOI: 10.3390/polym14020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Electronically conducting poly (aniline-co-2-hydroxyaniline) (PACHA), a copolymer of aniline and 2-hydroxyaniline (2HA), was electrochemically coated on gold substrate for methanol electrooxidation in alkaline media. The electrochemical behavior of PACHA coated gold electrode towards methanol electrooxidation was investigated via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for application in an alkaline fuel cell. Methanol electrooxidation was observed at two different electrode potentials depending on the concentration of the base. At the PACHA coated gold electrode, the methanol oxidation peak was observed at lower overpotential (at 0.19 V) in a solution of high base concentration (1.8 M NaOH), which was 30 mV lower than the peak for the uncoated gold electrode. In addition, the Faradic current Imax obtained on the PACHA coated electrode (20 mA) was two times higher as compared to the Faradic current Imax of the un-modified gold electrode (10 mA). In solution of lower base concentration (0.06 M NaOH), the electrooxidation of methanol became sluggish on both electrodes, as indicated by peak shifting towards positive potential and with reduced faradaic current (at 0.74 V on PACHA coated electrode; Imax 10 mA). The electrooxidation of methanol at both lower and higher electrode potentials was analyzed mechanistically and discussed in light of the literature. EIS results were interpreted using Nyquist and Bode plots. The charge transfer resistance was decreased and pseudo-capacitive behavior changed to conductive behavior when external applied potential was increased from 0.1 V to 0.4 V.
Collapse
Affiliation(s)
- Anwar ul Haq Ali Shah
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (S.Z.); (G.R.)
- Correspondence: (A.u.H.A.S.); (S.B.); Tel.: +92-919216652 (A.u.H.A.S.); +92-919216766 (S.B.)
| | - Sadaf Zia
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (S.Z.); (G.R.)
| | - Gul Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; (S.Z.); (G.R.)
| | - Salma Bilal
- National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
- Correspondence: (A.u.H.A.S.); (S.B.); Tel.: +92-919216652 (A.u.H.A.S.); +92-919216766 (S.B.)
| |
Collapse
|
8
|
Matsuguchi M, Nakamae T, Fujisada R, Shiba S. A Highly Sensitive Ammonia Gas Sensor Using Micrometer-Sized Core-Shell-Type Spherical Polyaniline Particles. SENSORS 2021; 21:s21227522. [PMID: 34833598 PMCID: PMC8619626 DOI: 10.3390/s21227522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023]
Abstract
A highly sensitive NH3 gas sensor based on micrometer-sized polyaniline (PANI) spheres was successfully fabricated. The PANI microspheres were prepared via a facile in situ chemical oxidation polymerization in a polystyrene microsphere dispersion solution, resulting in a core–shell structure. The sensor response increased as the diameter of the microspheres increased. The PSt@PANI(4.5) sensor, which had microspheres with a 4.5 μm average diameter, showed the largest response value of 77 for 100 ppm dry NH3 gas at 30 °C, which was 20 times that of the PANI-deposited film-based sensor. Even considering measurement error, the calculated detection limit was 46 ppb. A possible reason for why high sensitivity was achieved is simply the use of micrometer-sized PANI spherical particles. This research succeeded in providing a new and simple technology for developing a high-sensitivity NH3 gas sensor that operates at room temperature.
Collapse
|
9
|
Abstract
Since MXene (a two-dimensional material) was discovered in 2011, it has been favored in all aspects due to its rich surface functional groups, large specific surface area, high conductivity, large porosity, rich organic bonds, and high hydrophilicity. In this paper, the preparation of MXene is introduced first. HF etching was the first etching method for MXene; however, HF is corrosive, resulting in the development of the in situ HF method (fluoride + HCl). Due to the harmful effects of fluorine terminal on the performance of MXene, a fluorine-free preparation method was developed. The increase in interlayer spacing brought about by adding an intercalator can affect MXene’s performance. The usual preparation methods render MXene inevitably agglomerate and the resulting yields are insufficient. Many new preparation methods were researched in order to solve the problems of agglomeration and yield. Secondly, the application of MXene-based materials in gas sensors was discussed. MXene is often regarded as a flexible gas sensor, and the detection of ppb-level acetone at room temperature was observed for the first time. After the formation of composite materials, the increasing interlayer spacing and the specific surface area increased the number of active sites of gas adsorption and the gas sensitivity performance improved. Moreover, this paper discusses the gas-sensing mechanism of MXene. The gas-sensing mechanism of metallic MXene is affected by the expansion of the lamellae and will be doped with H2O and oxygen during the etching process in order to become a p-type semiconductor. A p-n heterojunction and a Schottky barrier forms due to combinations with other semiconductors; thus, the gas sensitivities of composite materials are regulated and controlled by them. Although there are only several reports on the application of MXene materials to gas sensors, MXene and its composite materials are expected to become materials that can effectively detect gases at room temperature, especially for the detection of NH3 and VOC gas. Finally, the challenges and opportunities of MXene as a gas sensor are discussed.
Collapse
|