1
|
Mao J, Yang F, Wang Q, Chen Y, Wang N. Switchable Terahertz Metasurfaces for Spin-Selective Absorption and Anomalous Reflection Based on Vanadium Dioxide. SENSORS (BASEL, SWITZERLAND) 2024; 24:4548. [PMID: 39065945 PMCID: PMC11280935 DOI: 10.3390/s24144548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Conventional chiral metasurfaces are constrained by predetermined functionalities and have limited versatility. To address these constraints, we propose a novel chirality-switchable terahertz (THz) metasurface with integrated heating control circuits tailored for spin-selective anomalous reflection, leveraging the phase-change material vanadium dioxide (VO2). The reversible and abrupt insulator-to-metal phase transition feature of VO2 is exploited to facilitate a chiral meta-atom with spin-selectivity capabilities. By employing the Pancharatnam-Berry phase principle, complete 2π reflection phase coverage is achieved by adjusting the orientation of the chiral structure. At the resonant frequency of 0.137 THz, the designed metasurface achieves selective absorption of a circularly polarized wave corresponding to the state of the VO2 patches. Concurrently, it reflects the circularly polarized wave of the opposite chirality anomalously at an angle of 28.4° while maintaining its handedness. This chirality-switchable THz metasurface exhibits promising potential across various applications, including wireless communication data capacity enlargement, polarization modulation, and chirality detection.
Collapse
Affiliation(s)
- Jinxian Mao
- School of Microelectronics, Shanghai University, Shanghai 200444, China; (J.M.); (Q.W.); (Y.C.)
| | - Fengyuan Yang
- School of Microelectronics, Shanghai University, Shanghai 200444, China; (J.M.); (Q.W.); (Y.C.)
- Shanghai Collaborative Innovation Center of Intelligent Sensing Chip Technology, Shanghai University, Shanghai 200444, China
| | - Qian Wang
- School of Microelectronics, Shanghai University, Shanghai 200444, China; (J.M.); (Q.W.); (Y.C.)
| | - Yuzi Chen
- School of Microelectronics, Shanghai University, Shanghai 200444, China; (J.M.); (Q.W.); (Y.C.)
| | - Nan Wang
- School of Microelectronics, Shanghai University, Shanghai 200444, China; (J.M.); (Q.W.); (Y.C.)
- Shanghai Collaborative Innovation Center of Intelligent Sensing Chip Technology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Sharma S, Kalyani N, Dutta T, Velázquez-González JS, Llamas-Garro I, Ung B, Bas J, Dubey R, Mishra SK. Optical Devices for the Diagnosis and Management of Spinal Cord Injuries: A Review. BIOSENSORS 2024; 14:296. [PMID: 38920599 PMCID: PMC11201428 DOI: 10.3390/bios14060296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
Throughout the central nervous system, the spinal cord plays a very important role, namely, transmitting sensory and motor information inwardly so that it can be processed by the brain. There are many different ways this structure can be damaged, such as through traumatic injury or surgery, such as scoliosis correction, for instance. Consequently, damage may be caused to the nervous system as a result of this. There is no doubt that optical devices such as microscopes and cameras can have a significant impact on research, diagnosis, and treatment planning for patients with spinal cord injuries (SCIs). Additionally, these technologies contribute a great deal to our understanding of these injuries, and they are also essential in enhancing the quality of life of individuals with spinal cord injuries. Through increasingly powerful, accurate, and minimally invasive technologies that have been developed over the last decade or so, several new optical devices have been introduced that are capable of improving the accuracy of SCI diagnosis and treatment and promoting a better quality of life after surgery. We aim in this paper to present a timely overview of the various research fields that have been conducted on optical devices that can be used to diagnose spinal cord injuries as well as to manage the associated health complications that affected individuals may experience.
Collapse
Affiliation(s)
- Sonika Sharma
- Department of Physics, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India;
| | - Neeti Kalyani
- Department of Biotechnology and Biomedicine, Denmark Technical University, 2800 Kongens Lyngby, Denmark;
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, West Bengal, India;
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (J.S.V.-G.); (I.L.-G.)
| | - Ignacio Llamas-Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (J.S.V.-G.); (I.L.-G.)
| | - Bora Ung
- Electrical Engineering Department, Ecole de Technologie Superieure, Montreal, QC H3C 1K3, Canada;
| | - Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, 70-453 Szczecin, Poland;
| | - Satyendra K. Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| |
Collapse
|
3
|
Li Y, Lu D, Li J, Huang S, Fang X. Ultrasensitive fiber sensor with enhanced Vernier effect for simultaneous measurements of transverse load and temperature. OPTICS EXPRESS 2024; 32:1625-1634. [PMID: 38297710 DOI: 10.1364/oe.507756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024]
Abstract
Based on enhanced Vernier effect, a compact fiber sensor with ultrahigh sensitivity is proposed for simultaneous transverse load (TL) and temperature measurements. A single mode fiber (SMF) is spliced with a segment of hollow-core fiber (HCF) coated with polydimethylsiloxane (PDMS), some PDMS is injected into the HCF, forming a Vernier sensor with an air cavity adjacent to a PDMS cavity. It is shown that TL and temperature changes give rise to opposite and remarkable different variations in lengths of the two cavities, thereby enhancing Vernier effect and in favor of simultaneous measurements of TL and temperature. Moreover, the limited sensitivity magnification due to the length mismatch between the two cavities is compensated for by reconstructing the Vernier envelope with a broadened free spectrum range (FSR) from output signal. As a result, the highest TL sensitivity reported so far of -2637.47 nm/N and a good condition number of 69.056 for the sensitivity coefficient matrix have been achieved.
Collapse
|
4
|
Tabassum S, Nayemuzzaman SK, Kala M, Kumar Mishra A, Mishra SK. Metasurfaces for Sensing Applications: Gas, Bio and Chemical. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22186896. [PMID: 36146243 PMCID: PMC9504383 DOI: 10.3390/s22186896] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/11/2023]
Abstract
Performance of photonic devices critically depends upon their efficiency on controlling the flow of light therein. In the recent past, the implementation of plasmonics, two-dimensional (2D) materials and metamaterials for enhanced light-matter interaction (through concepts such as sub-wavelength light confinement and dynamic wavefront shape manipulation) led to diverse applications belonging to spectroscopy, imaging and optical sensing etc. While 2D materials such as graphene, MoS2 etc., are still being explored in optical sensing in last few years, the application of plasmonics and metamaterials is limited owing to the involvement of noble metals having a constant electron density. The capability of competently controlling the electron density of noble metals is very limited. Further, due to absorption characteristics of metals, the plasmonic and metamaterial devices suffer from large optical loss. Hence, the photonic devices (sensors, in particular) require that an efficient dynamic control of light at nanoscale through field (electric or optical) variation using substitute low-loss materials. One such option may be plasmonic metasurfaces. Metasurfaces are arrays of optical antenna-like anisotropic structures (sub-wavelength size), which are designated to control the amplitude and phase of reflected, scattered and transmitted components of incident light radiation. The present review put forth recent development on metamaterial and metastructure-based various sensors.
Collapse
Affiliation(s)
- Shawana Tabassum
- Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - SK Nayemuzzaman
- Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Manish Kala
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Akhilesh Kumar Mishra
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Satyendra Kumar Mishra
- Centre of Optics and Photonics (COPL), University of Laval, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|