1
|
Chanachot K, Saechua W, Posom J, Sirisomboon P. A Geographical Origin Classification of Durian (cv. Monthong) Using Near-Infrared Diffuse Reflectance Spectroscopy. Foods 2023; 12:3844. [PMID: 37893737 PMCID: PMC10606537 DOI: 10.3390/foods12203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The objective of this research was to classify the geographical origin of durians (cv. Monthong) based on geographical identification (GI) and regions (R) using near infrared (NIR). The samples were scanned with an FT-NIR spectrometer (12,500 to 4000 cm-1). The NIR absorbance differences among samples that were collected from different parts of the fruit, including intact peel with thorns (I-form), cut-thorn peel (C-form), stem (S-form), and the applied synthetic minority over-sampling technique (SMOTE), were also investigated. Models were developed across several classification algorithms by the classification learner app in MATLAB. The models were optimized using a featured wavenumber selected by a genetic algorithm (GA). An effective model based on GI was developed using SMOTE-I-spectra with a neural network; accuracy was provided as 95.60% and 95.00% in cross-validation and training sets. The test model was provided with a testing set value of %accuracy, and 94.70% by the testing set was obtained. Likewise, the model based on the regions was developed from SMOTE-ICS-form spectra, with the ensemble classifier showing the best result. The best result, 88.00FF% accuracy by cross validation, 86.50% by training set, and 64.90% by testing set, indicates the classification model of East (E-region), Northeast (NE-region), and South (S-region) regions could be applied for rough screening. In summary, NIR spectroscopy could be used as a rapid and nondestructive method for the accurate GI classification of durians.
Collapse
Affiliation(s)
- Kingdow Chanachot
- Department of Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.C.); (P.S.)
| | - Wanphut Saechua
- Department of Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.C.); (P.S.)
| | - Jetsada Posom
- Department of Agricultural Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panmanas Sirisomboon
- Department of Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.C.); (P.S.)
| |
Collapse
|
2
|
Zhang Z, Wang Z, Luo Y, Zhang J, Tian D, Zhang Y. Rapid Estimation of Soil Pb Concentration Based on Spectral Feature Screening and Multi-Strategy Spectral Fusion. SENSORS (BASEL, SWITZERLAND) 2023; 23:7707. [PMID: 37765764 PMCID: PMC10538168 DOI: 10.3390/s23187707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Traditional methods for obtaining soil heavy metal content are expensive, inefficient, and limited in monitoring range. In order to meet the needs of soil environmental quality evaluation and health status assessment, visible near-infrared spectroscopy and XRF spectroscopy for monitoring heavy metal content in soil have attracted much attention, because of their rapid, nondestructive, economical, and environmentally friendly features. The use of either of these spectra alone cannot meet the accuracy requirements of traditional measurements, while the synergistic use of the two spectra can further improve the accuracy of monitoring heavy metal lead content in soil. Therefore, this study applied various spectral transformations and preprocessing to vis-NIR and XRF spectra; used the whale optimization algorithm (WOA) and competitive adaptive re-weighted sampling (CARS) algorithms to identify feature spectra; designed a combination variable model (CVM) based on multi-layer spectral data fusion, which improved the spectral preprocessing and spectral feature screening process to increase the efficiency of spectral fusion; and established a quantitative model for soil Pb concentration using partial least squares regression (PLSR). The estimation performance of three spectral fusion strategies, CVM, outer-product analysis (OPA), and Granger-Ramanathan averaging (GRA), was discussed. The results showed that the accuracy and efficiency of the CARS algorithm in the fused spectra estimation model were superior to those of the WOA algorithm, with an average coefficient of determination (R2) value of 0.9226 and an average root mean square error (RMSE) of 0.1984. The accuracy of the estimation models established, based on the different spectral types, to predict the Pb content of the soil was ranked as follows: the CVM model > the XRF spectral model > the vis-NIR spectral model. Within the CVM fusion strategy, the estimation model based on CARS and PLSR (CARS_D1+D2) performed the best, with R2 and RMSE values of 0.9546 and 0.2035, respectively. Among the three spectral fusion strategies, CVM had the highest accuracy, OPA had the smallest errors, and GRA showed a more balanced performance. This study provides technical means for on-site rapid estimation of Pb content based on multi-source spectral fusion and lays the foundation for subsequent research on dynamic, real-time, and large-scale quantitative monitoring of soil heavy metal pollution using high-spectral remote sensing images.
Collapse
Affiliation(s)
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | | | | | | | | |
Collapse
|
3
|
Shi X, Song J, Wang H, Lv X, Tian T, Wang J, Li W, Zhong M, Jiang M. Improving the monitoring of root zone soil salinity under vegetation cover conditions by combining canopy spectral information and crop growth parameters. FRONTIERS IN PLANT SCIENCE 2023; 14:1171594. [PMID: 37469774 PMCID: PMC10352918 DOI: 10.3389/fpls.2023.1171594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Soil salinization is one of the main causes of land degradation in arid and semi-arid areas. Timely and accurate monitoring of soil salinity in different areas is a prerequisite for amelioration. Hyperspectral technology has been widely used in soil salinity monitoring due to its high efficiency and rapidity. However, vegetation cover is an inevitable interference in the direct acquisition of soil spectra during crop growth period, which greatly limits the monitoring of soil salinity by remote sensing. Due to high soil salinity could lead to difficulty in plants' water absorption, and inhibit plant dry matter accumulation, a method for monitoring root zone soil salinity by combining vegetation canopy spectral information and crop aboveground growth parameters was proposed in this study. The canopy spectral information was acquired by a spectroradiometer, and then variable importance in projection (VIP), competitive adaptive reweighted sampling (CARS), and random frog algorithm (RFA) were used to extract the salinity spectral features in cotton canopy spectrum. The extracted features were then used to estimate root zone soil salinity in cotton field by combining with cotton plant height, aboveground biomass, and shoot water content. The results showed that there was a negative correlation between plant height/aboveground biomass/shoot water content and soil salinity in 0-20, 0-40, and 0-60 cm soil layers at different growth stages of cotton. Spectral feature selection by the three methods all improved the prediction accuracy of soil salinity, especially CARS. The prediction accuracy based on the combination of spectral features and cotton growth parameters was significantly higher than that based on only spectral features, with R2 increasing by 10.01%, 18.35%, and 29.90% for the 0-20, 0-40, and 0-60 cm soil layer, respectively. The model constructed based on the first derivative spectral preprocessing, spectral feature selection by CARS, cotton plant height, and shoot water content had the highest accuracy for each soil layer, with R2 of 0.715,0.769, and 0.742 for the 0-20, 0-40, 0-60 cm soil layer, respectively. Therefore, the method by combining cotton canopy hyperspectral data and plant growth parameters could significantly improve the prediction accuracy of root zone soil salinity under vegetation cover conditions. This is of great significance for the amelioration of saline soil in salinized farmlands arid areas.
Collapse
Affiliation(s)
- Xiaoyan Shi
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Jianghui Song
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Haijiang Wang
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Xin Lv
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Tian Tian
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Jingang Wang
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Weidi Li
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Mingtao Zhong
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Menghao Jiang
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Zhu L, Gu W, Song T, Qiu F, Wang Q. Coal seam in-situ inorganic analysis based on least angle regression and competitive adaptive reweighted sampling algorithm by XRF-visNIR fusion. Sci Rep 2022; 12:22365. [PMID: 36572762 PMCID: PMC9792546 DOI: 10.1038/s41598-022-27037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The fusion of X-ray fluorescence spectroscopy (XRF) and visible near infrared spectroscopy (visNIR) has been widely used in geological exploration. The outer product analysis (OPA) has a good effect in the fusion. The dimension of the spectral matrix obtained by OPA is large, and the Competitive Adaptive Reweighted Sampling (CARS) cannot cover the whole spectrum. As a result, the selected variables by the method are inconsistent each time. In this paper, a new feature variable screening method is proposed, which uses the Least Angle Regression (LAR) to select the high dimensional spectral matrix first, and then uses CARS to complete the secondary selection of the spectral matrix, forming the LAR-CARS algorithm. The purpose is to make the sampling method cover all the spectral data. XRF and visNIR tests were carried out on three cores in two boreholes, and a cross-validation set, validation set and a test set were established by combining the results of wavelength dispersion X-ray fluorescence spectrometer and ITRAX Core scanner in the laboratory. The quantitative model was established with the Extreme Gradient Boosting (XGBoost) and LAR-CARS was compared to these other algorithms (LAR, Successive Projections Algorithm, Monte Carlo uninformative variables elimination and CARS). The results showed that the RMSEP values of the models established by the LAR-CARS for six rock-forming elements (Si, Al, K, Ca, Fe, Ti) were relatively small, and the RPD ranges from 1.424 to 2.514. All these results show that the high-dimensional matrix formed by XRF and visNIR integration combined with LAR-CARS can be used for quantitative analysis of rock forming elements in in-situ coal seam cores, and the analysis results can be used as the basis for judging lithology. The research will provide necessary technical support for digital mine construction.
Collapse
Affiliation(s)
- Lei Zhu
- China Coal Energy Research Institute Co., Ltd., Xi’an, 710054 China
| | - Wenzhe Gu
- grid.411510.00000 0000 9030 231XSchool of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing, 10083 China
| | - Tianqi Song
- China Coal Energy Research Institute Co., Ltd., Xi’an, 710054 China
| | - Fengqi Qiu
- China Coal Energy Research Institute Co., Ltd., Xi’an, 710054 China
| | - Qingya Wang
- grid.418639.10000 0004 5930 7541State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013 China ,grid.54549.390000 0004 0369 4060School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 Sichuan China
| |
Collapse
|
5
|
Tan B, You W, Tian S, Xiao T, Wang M, Zheng B, Luo L. Soil Nitrogen Content Detection Based on Near-Infrared Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22208013. [PMID: 36298363 PMCID: PMC9612394 DOI: 10.3390/s22208013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 05/10/2023]
Abstract
Traditional soil nitrogen detection methods have the characteristics of being time-consuming and having an environmental pollution effect. We urgently need a rapid, easy-to-operate, and non-polluting soil nitrogen detection technology. In order to quickly measure the nitrogen content in soil, a new method for detecting the nitrogen content in soil is presented by using a near-infrared spectrum technique and random forest regression (RF). Firstly, the experiment took the soil by the Xunsi River in the area of Hubei University of Technology as the research object, and a total of 143 soil samples were collected. Secondly, NIR spectral data from 143 soil samples were acquired, and chemical and physical methods were used to determine the content of nitrogen in the soil. Thirdly, the raw spectral data of soil samples were denoised by preprocessing. Finally, a forecast model for the soil nitrogen content was developed by using the measured values of components and modeling algorithms. The model was optimized by adjusting the changes in the model parameters and Gini coefficient (∆Gini), and the model was compared with the back propagation (BP) and support vector machine (SVM) models. The results show that: the RF model modeling set prediction R2C is 0.921, the RMSEC is 0.115, the test set R2P is 0.83, and the RMSEP is 0.141; the detection of the soil nitrogen content can be realized by using a near-infrared spectrum technique and random forest algorithm, and its prediction accuracy is better than that of the BP and SVM models; using ∆ Gini to optimize the RF modeling data, the spectral information of the soil nitrogen content can be extracted, and the data redundancy can be reduced effectively.
Collapse
Affiliation(s)
- Baohua Tan
- School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
- National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China
| | - Wenhao You
- School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
- National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China
| | - Shihao Tian
- School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
- National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China
| | - Tengfei Xiao
- School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
- National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China
| | - Mengchen Wang
- School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
- National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China
| | - Beitian Zheng
- School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
- National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China
| | - Lina Luo
- School of Physical Education, Hubei University of Technology, Wuhan 430068, China
- Correspondence:
| |
Collapse
|
6
|
Khosravi V, Gholizadeh A, Saberioon M. Soil toxic elements determination using integration of Sentinel-2 and Landsat-8 images: Effect of fusion techniques on model performance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119828. [PMID: 35961573 DOI: 10.1016/j.envpol.2022.119828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Finding an appropriate satellite image as simultaneous as possible with the sampling time campaigns is challenging. Fusion can be considered as a method of integrating images and obtaining more pixels with higher spatial, spectral and temporal resolutions. This paper investigated the impact of Landsat 8-OLI and Sentinel-2A data fusion on prediction of several toxic elements at a mine waste dump. The 30 m spatial resolution Landsat 8-OLI bands were fused with the 10 m Sentinel-2A bands using various fusion techniques namely hue-saturation-value (HSV), Brovey, principal component analysis (PCA), Gram-Schmidt (GS), wavelet, and area-to-point regression kriging (ATPRK). ATPRK was the best method preserving both spectral and spatial features of Landsat 8-OLI and Sentinel-2A after fusion. Furthermore, the partial least squares regression (PLSR) model developed on genetic algorithm (GA)-selected laboratory visible-near infrared-shortwave infrared (VNIR-SWIR) spectra yielded more accurate prediction results compared to the PLSR model calibrated on the entire spectra. It was hence, applied to both individual sensors and their ATPRK-fused image. In case of the individual sensors, except for As, Sentinel-2A provided more robust prediction models than Landsat 8-OLI. However, the best performances were obtained using the fused images, highlighting the potential of data fusion to enhance the toxic elements' prediction models.
Collapse
Affiliation(s)
- Vahid Khosravi
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500, Prague, Czech Republic
| | - Asa Gholizadeh
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500, Prague, Czech Republic.
| | - Mohammadmehdi Saberioon
- Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing and Geoinformatics, Telegrafenberg, Potsdam, 14473, Germany
| |
Collapse
|
7
|
Fakhri A, Valadan Zoej MJ, Safdarinezhad A, Yavari P. Estimation of heavy metal concentrations (Cd and Pb) in plant leaves using optimal spectral indicators and artificial neural networks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76119-76134. [PMID: 35666414 DOI: 10.1007/s11356-022-21216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The necessity of continuously monitoring the agricultural products in terms of their health has enforced the development of rapid, low-cost, and non-destructive monitoring solutions. Heavy metal contamination of the plants is known as a source of health threats that are made by their proximities with pollutant soil, water, and air. In this paper, a method was proposed to measure lead (Pb) and cadmium (Cd) contamination of plant leaves through field spectrometry as a low-cost solution for continuous monitoring. The study area was Mahneshan county of Zanjan province in Iran with rich heavy metal mines that have more potential for plant contamination. At first, we collected different plant samples throughout the study area and measured the Pb and Cd concentrations using ICP-AES, in which we observed that the concentrations of Pb and Cd are in the range of 1.4 ~ 282.6 and 0.3 ~ 66.7 μgg-1, respectively, and then we tried to find the optimum estimator model through a multi-objective version of genetic algorithm (GA) optimization that finds simultaneously the structure of an artificial neural network and its input features. The features extracted from the raw spectrums have been collimated to be compatible with the Sentinel-2 multispectral bands for the possibility of further developments. The results demonstrate the efficiency of the optimum estimator model in estimation of the leaves' Pb and Cd contamination, irrespective of the plant type, which has reached the R2 of 0.99 and 0.85 for Pb and Cd, respectively. Additionally, the results suggested that the 783-, 842-, and 865-nm spectral bands, which are similar to the 7, 8, and 8a sentinel-2 spectral bands, are more efficient for this purpose.
Collapse
Affiliation(s)
- Arvin Fakhri
- Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, P.O Box 15433-19967, Tehran, Iran.
| | - Mohammad Javad Valadan Zoej
- Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, P.O Box 15433-19967, Tehran, Iran
| | - Alireza Safdarinezhad
- Department of Geodesy and Surveying Engineering, Tafresh University, Tafresh, 39518-79611, Iran
| | - Parvin Yavari
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health & Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Classification of Textile Samples Using Data Fusion Combining Near- and Mid-Infrared Spectral Information. Polymers (Basel) 2022; 14:polym14153073. [PMID: 35956591 PMCID: PMC9370096 DOI: 10.3390/polym14153073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
There is an urgent need to reuse and recycle textile fibers, since today, low recycling rates are achieved. Accurate classification methods for post-consumer textile waste are needed in the short term for a higher circularity in the textile and fashion industries. This paper compares different spectroscopic data from textile samples in order to correctly classify the textile samples. The accurate classification of textile waste results in higher recycling rates and a better quality of the recycled materials. The data fusion of near- and mid-infrared spectra is compared with single-spectrum information. The classification results show that data fusion is a better option, providing more accurate classification results, especially for difficult classification problems where the classes are wide and close to one another. The experimental results presented in this paper prove that the data fusion of near- and mid-infrared spectra is a good option for accurate textile-waste classification, since this approach allows the classification results to be significantly improved.
Collapse
|
9
|
Casian T, Nagy B, Kovács B, Galata DL, Hirsch E, Farkas A. Challenges and Opportunities of Implementing Data Fusion in Process Analytical Technology-A Review. Molecules 2022; 27:4846. [PMID: 35956791 PMCID: PMC9369811 DOI: 10.3390/molecules27154846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
The release of the FDA's guidance on Process Analytical Technology has motivated and supported the pharmaceutical industry to deliver consistent quality medicine by acquiring a deeper understanding of the product performance and process interplay. The technical opportunities to reach this high-level control have considerably evolved since 2004 due to the development of advanced analytical sensors and chemometric tools. However, their transfer to the highly regulated pharmaceutical sector has been limited. To this respect, data fusion strategies have been extensively applied in different sectors, such as food or chemical, to provide a more robust performance of the analytical platforms. This survey evaluates the challenges and opportunities of implementing data fusion within the PAT concept by identifying transfer opportunities from other sectors. Special attention is given to the data types available from pharmaceutical manufacturing and their compatibility with data fusion strategies. Furthermore, the integration into Pharma 4.0 is discussed.
Collapse
Affiliation(s)
- Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Béla Kovács
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| |
Collapse
|
10
|
Portable X-ray Fluorescence Analysis of Organic Amendments: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Portable XRF spectrometry (pXRF) has recently undergone significant technological improvements and is being applied in a wide range of studies. Despite pXRF advantages, this technique has rarely been used to characterize organic amendments and residues. This article reviews those studies undertaken to date in which pXRF is used to characterize these products. Published studies show that pXRF correctly measures elements such as Fe, Pb, Zn, Mn, Ca, and K but gives conflicting results for elements such as Cr, Ni, and As. Among the reasons that may cause the low performance of the technique with certain elements or under certain measurement conditions would be the inadequacy of the analytical comparison procedures used (i.e., digestion with aqua regia), the lack of knowledge of the interfering effects of organic matter, and sample moisture on the XRF signals and the need for a standardized protocol for performing the measurements. However, the speed and low cost of the procedure forecast a greater future use of this technique, especially in cooperation with other fast spectroscopic techniques based on near-infrared (NIRS) or mid-infrared (MIR) spectroscopies. Chemometric procedures based on one or more of these techniques will allow the prediction of elements below the detection limit of pXRF instruments (Cd, Hg), or other properties of organic amendments (organic matter, N, electrical conductivity, cation exchange capacity).
Collapse
|