1
|
Sheikh TA, Ismail M, Rabbee MF, Khan H, Rafique A, Rasheed Z, Siddique A, Rafiq MZ, Khattak ZAK, Jillani SMS, Shahzad U, Akhtar MN, Saeed M, Alzahrani KA, Uddin J, Rahman MM, Verpoort F. 2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective. Crit Rev Anal Chem 2024:1-46. [PMID: 39046991 DOI: 10.1080/10408347.2024.2379851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Ali Sheikh
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ismail
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hira Khan
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayesha Rafique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zeerak Rasheed
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Siddique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Zeeshan Rafiq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- National Research Tomsk Polytechnic University, Tomsk, Russian
| |
Collapse
|
2
|
Kar SR, Dash PP, Panda SN, Mohanty P, Mohanty D, Barick AK, Sahoo SK, Mohapatra P, Jali BR. A Formyl Chromone Based Schiff Base Derivative: An Efficient Colorimetric and Fluorescence Chemosensor for the Selective Detection of Hg 2+ Ions. J Fluoresc 2023:10.1007/s10895-023-03500-z. [PMID: 38109029 DOI: 10.1007/s10895-023-03500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
A novel chromone-based Schiff base L was designed and synthesized by condensing an equimolar amount of 3-formyl chromone and 2,4-dinitro phenyl hydrazine. Schiff base L was developed as a potent colorimetric and fluorescent molecular probe to recognize Hg2+ ions over other competitive metal ions. In the presence of Hg2+, Schiff base L displays a naked-eye detectable color change under day and UV365 nm light. Various UV-Vis and fluorescence studies of L were performed in the absence and presence of Hg2+ to determine the sensitivity and the sensing mechanism. With high selectivity and specificity, the detection limit and association constant of L for Hg2+ were estimated at 1.87 µM and 1.234 × 107 M-1, respectively. The developed sensor L was applied to real soil samples for the detection of Hg2+.
Collapse
Affiliation(s)
- Soumya Ranjan Kar
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Pragyan Parimita Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sankalpa Narayan Panda
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | | | - Aruna Kumar Barick
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Suban Kumar Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, India
| | - Priyaranjan Mohapatra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India.
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India.
| |
Collapse
|
3
|
Sarvestani MRJ, Madrakian T, Afkhami A, Ajdari B. Applicability of a synthesized melamine based covalent organic framework as a novel ionophore for the potentiometric determination of mercury (II): Computational and experimental studies. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Iradukunda Y, Kang JY, Nsanzamahoro S, Fu XK, Muhire J, Shi YP. Green-emitting functionalized silicon nanoparticles as an "off-on" fluorescence bio-probe for the sensitive and selective detection of mercury (II) and 3-mercaptopropionic acid. Talanta 2023; 256:124322. [PMID: 36736269 DOI: 10.1016/j.talanta.2023.124322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
Herein, we developed a class of functionalized silicon nanoparticles (F-SiNPs) bio-probes named thiol-conjugated F-SiNPs. They combine excellent biocompatibility with small dimensions (<10 nm) and biological usefulness with sustained and robust fluorescence (3.32% photoluminescent quantum yield). Identifying 3-Mercaptopropionic acid (3-MPA), which lowers the quantity of gamma-aminobutyric acid in the brain, and mercury (Hg2+) was a crucially important step since their excessive levels are a sign of several disorders. Using F-SiNPs as a fluorescent bio-probe, we provided an "off-on" technique for sensitively and selectively determining Hg2+ and 3-MPA in this study. The 3-(2-aminoethylamino) propyl (dimethoxymethylsilane) and basic fuchsin as precursors were hydrothermally treated to produce the F-SiNPs exhibiting green fluorescence. Our results suggest that Hg2+ reduced the fluorescence of F-SiNPs because of strong ionic interactions and metal-ligand binding among many thiols and carboxyl groupings at the surface of Hg2+ and F-SiNPs. Additionally, the resultants demonstrated that after being quenched by Hg2+, the produced F-SiNPs led to the distinctive "off-on" response to 3-MPA. Moreover, the method could detect Hg2+ and 3-MPA with limits of detection of 0.065 μM and 0.017 μM, respectively. The technique employed is quick, easy, affordable, and environmentally friendly. The sensing platform has successfully determined Hg2+ and 3-MPA in urine, water, and human serum samples.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Stanislas Nsanzamahoro
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jules Muhire
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Abd Hakim S, Rianna M, Rais A. Manufacture and characterization of indicator electrodes from PPy + H2SO4 and PPy + Sulfonic acid as a urea sensor using urease enzyme immobilization technique in PVA. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2023; 6:89-93. [DOI: 10.1016/j.mset.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Ghaemi M, Hajiaghababaei L, Tehrani RM, Najafpour J, Sadat Shahvelayati A. A theoretical and experimental approaches to the use of benzoyl carbamothioyl alanine as a new ionophore for development of various mercury selective electrodes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Synthesis and surface characterization of a chemically modified carbon paste electrode and its application in determination of Hg(II) ions in water, food and dental amalgam samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Dong H, Girmatsion M, Wang R, Lu G, Xie Y, Guo Y, Qian H, Yao W. Construction of fluorescent logic gates for the detection of mercury(II) and ciprofloxacin based on phycocyanin. Methods Appl Fluoresc 2022; 10. [PMID: 35584692 DOI: 10.1088/2050-6120/ac7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022]
Abstract
Chemical pollutants such as heavy metals and antibiotics in the environment pose a huge threat to humans and animals. Our studies have demonstrated that the fluorescence of phycocyanin showed quenching responses towards both mercury (Hg2+) and ciprofloxacin (CIP), which acted in accordance with the "OR" molecular logic gate. In order to discriminate Hg2+ and CIP in application scenarios, cysteine (Cys) was utilized to design another "INHIBIT" logic gate, in which Hg2+ and Cys were the two inputs. Thus, an intelligent biosensor with dual-target identification capacity was successfully developed by using a fluorescent natural protein in an ingenious logic gate system.
Collapse
Affiliation(s)
- Han Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Mogos Girmatsion
- Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Ruoyu Wang
- Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Gang Lu
- Safety & Quality Management Department, Inner Mongolia Mengniu Dairy (group) CO., LTD., Inner Mongolia Mengniu Dairy (group) CO., LTD., Hohhot, Inner Mongolia, 011500, CHINA
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Wuxi, Wuxi, Jiangsu, 214122, CHINA
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| |
Collapse
|
9
|
Akl ZF. Rapid electrochemical sensor for uranium( vi) assessment in aqueous media. RSC Adv 2022; 12:20147-20155. [PMID: 35919617 PMCID: PMC9272783 DOI: 10.1039/d2ra02619h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 01/01/2023] Open
Abstract
The significance of reliable monitoring of uranium levels in water recourses calls for the development of time-saving, robust, and accurate methods for its estimation. In this view, the current study describes the design and analytical parameters of a potentiometric membrane sensor for uranium(vi) ions. The sensor is based on a new Schiff base derivative, as an ionophore, that was synthesized and structurally characterized by elemental, FTIR, and 1HNMR analyses. The impact of the membrane constituents was studied and the membrane composition of PVC (32.50) : o-NPOE (65.00) : ionophore (2.00) : KTpClPB (0.50) (%, w/w) achieved the optimal performance. A Nernestian response was observed for uranium(vi) ions within the concentration range 1.00 × 10−6 to 1.00 × 10−1 mol L−1. The sensor revealed a low detection limit of 3.90 × 10−7 mol L−1 with satisfactory reproducibility. Stable and reproducible potentials were obtained within a short time (9 s) over the pH range 2.10–4.21. The impact of possible competing ions was investigated and the selectivity coefficients revealed appropriate selectivity for uranium(vi) ions over various cations without significant interference. The sensor's performance was examined by determining the amount of uranium(vi) in water samples and the results showed no significant differences from those obtained by the ICP-OES method. A new Schiff base was synthesized and applied as ionophore to construct potentiometric sensor for uranium(vi) determination.![]()
Collapse
Affiliation(s)
- Zeinab F. Akl
- Egyptian Atomic Energy Authority, P.O. Box 11762, Cairo, Egypt
| |
Collapse
|
10
|
Beaver K, Dantanarayana A, Minteer SD. Materials Approaches for Improving Electrochemical Sensor Performance. J Phys Chem B 2021; 125:11820-11834. [PMID: 34677956 DOI: 10.1021/acs.jpcb.1c07063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors have emerged as important diagnostic tools in recent years, due to their simplicity and ease of use. Compared to instrumental analysis methods that use complicated experimental and data analysis techniques─such as mass spectrometry, nuclear magnetic resonance (NMR), spectrophotometric methods, and chromatography─electrochemical sensors show promise for use in a wide range of real-time and in situ applications such as pharmaceutical testing, environmental monitoring, and medical diagnostics. In order to identify analytes in complex and/or biological samples, materials used for both the electrode materials and the chemically selective layer have been evolving throughout the years for optimizing the analytical performance of electrochemical sensors to increase sensitivity, selectivity and linear range. In this Perspective, attention will be focused on different types of materials that have been used for electrochemical sensing, including new combinations of well-studied materials as well as novel strategies to enhance the performance of sensing devices. The Perspective will also discuss existing challenges in the field and future strategies for addressing those challenges.
Collapse
Affiliation(s)
- Kevin Beaver
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ashwini Dantanarayana
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Gao Y, Xu S, Liu Z, Yu K, Pan X. Dual-Emission Fluorescence Probe Based on CdTe Quantum Dots and Rhodamine B for Visual Detection of Mercury and Its Logic Gate Behavior. MICROMACHINES 2021; 12:713. [PMID: 34207022 PMCID: PMC8234752 DOI: 10.3390/mi12060713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/14/2023]
Abstract
It is urgent that a convenient and sensitive technique of detecting Hg2+ be developed because of its toxicity. Conventional fluorescence analysis works with a single fluorescence probe, and it often suffers from signal fluctuations which are influenced by external factors. In this research, a novel dual-emission probe assembled through utilizing CdTe quantum dots (QDs) and rhodamine B was designed to detect Hg2+ visually. Only the emission of CdTe QDs was quenched after adding Hg2+ in the dual-emission probe, which caused an intensity ratio change of the two different emission wavelengths and hence facilitated the visual detection of Hg2+. Compared to single emission QDs-based probe, a better linear relationship was shown between the variation of fluorescence intensity and the concentration of Hg2+, and the limit of detection (LOD) was found to be11.4 nM in the range of 0-2.6 μM. Interestingly, the intensity of the probe containing Hg2+ could be recovered in presence of glutathione (GSH) due to the stronger binding affinity of Hg2+ towards GSH than that towards CdTe QDs. Based on this phenomenon, an IMPLICATION logic gate using Hg2+/GSH as inputs and the fluorescence signal of QDs as an output was constructed.
Collapse
Affiliation(s)
- Yuefeng Gao
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.G.); (Z.L.); (K.Y.)
| | - Sai Xu
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Zhijian Liu
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.G.); (Z.L.); (K.Y.)
| | - Kezhen Yu
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.G.); (Z.L.); (K.Y.)
| | - Xinxiang Pan
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.G.); (Z.L.); (K.Y.)
- Maritime College, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|