Liu W, Han W, Jin G, Gong K, Ma J. Classification of major species in the
sericite-Artemisia desert grassland using hyperspectral images and spectral feature identification.
PeerJ 2024;
12:e17663. [PMID:
39035157 PMCID:
PMC11260411 DOI:
10.7717/peerj.17663]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Background
The species composition of and changes in grassland communities are important indices for inferring the number, quality and community succession of grasslands, and accurate monitoring is the foundation for evaluating, protecting, and utilizing grassland resources. Remote sensing technology provides a reliable and powerful approach for measuring regional terrain information, and the identification of grassland species by remote sensing will improve the quality and effectiveness of grassland monitoring.
Methods
Ground hyperspectral images of a sericite-Artemisia desert grassland in different seasons were obtained with a Soc710 VP imaging spectrometer. First-order differential processing was used to calculate the characteristic parameters. Analysis of variance was used to extract the main species, namely, Seriphidium transiliense (Poljak), Ceratocarpus arenarius L., Petrosimonia sibirica (Pall), bare land and the spectral characteristic parameters and vegetation indices in different seasons. On this basis, Fisher discriminant analysis was used to divide the samples into a training set and a test set at a ratio of 7:3. The spectral characteristic parameters and vegetation indices were used to identify the three main plants and bare land.
Results
The selection of parameters with significant differences (P < 0.05) between the recognition objects effectively distinguished different land features, and the identification parameters also differed due to differences in growth period and species. The overall accuracy of the recognition model established by the vegetation index decreased in the following order: June (98.87%) > September (91.53%) > April (90.37%). The overall accuracy of the recognition model established by the feature parameters decreased in the following order: September (89.77%) > June (88.48%) > April (85.98%).
Conclusions
The recognition models based on vegetation indices in different months are superior to those based on feature parameters, with overall accuracies ranging from 1.76% to 9.40% higher. Based on hyperspectral image data, the use of vegetation indices as identification parameters can enable the identification of the main plants in sericite-Artemisia desert grassland, providing a basis for further quantitative classification of the species in community images.
Collapse