1
|
Yang D, Li W, Tian H, Chen Z, Ji Y, Dong H, Wang Y. High-Sensitivity and In Situ Multi-Component Detection of Gases Based on Multiple-Reflection-Cavity-Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:5825. [PMID: 39275735 PMCID: PMC11398158 DOI: 10.3390/s24175825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Raman spectroscopy with the advantages of the in situ and simultaneous detection of multi-components has been widely used in the identification and quantitative detection of gas. As a type of scattering spectroscopy, the detection sensitivity of Raman spectroscopy is relatively lower, mainly due to the low signal collection efficiency. This paper presents the design and assembly of a multi-channel cavity-enhanced Raman spectroscopy system, optimizing the structure of the sample pool to reduce the loss of the laser and increase the excitation intensity of the Raman signals. Moreover, three channels are used to collect Raman signals to increase the signal collection efficiency for improving the detection sensitivity. The results showed that the limits of detection for the CH4, H2, CO2, O2, and N2 gases were calculated to be 3.1, 34.9, 17.9, 27, and 35.2 ppm, respectively. The established calibration curves showed that the correlation coefficients were all greater than 0.999, indicating an excellent linear correlation and high level of reliability. Meanwhile, under long-time integration detection, the Raman signals of CH4, H2, and CO2 could be clearly distinguished at the concentrations of 10, 10, and 50 ppm, respectively. The results indicated that the designed Raman system possesses broad application prospects in complex field environments.
Collapse
Affiliation(s)
- Dewang Yang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenhua Li
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haoyue Tian
- Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhigao Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuhang Ji
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hui Dong
- Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Yongmei Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Zhang W, Chen X, Chen Y, Li HY, Liu H. Construction of semiconductor nanocomposites for room-temperature gas sensors. NANOSCALE 2024; 16:12883-12908. [PMID: 38919996 DOI: 10.1039/d4nr00441h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Gas sensors are essential for ensuring public safety and improving quality of life. Room-temperature gas sensors are notable for their potential economic benefits and low energy consumption, and their expected integration with wearable electronics, making them a focal point of contemporary research. Advances in nanomaterials and low-dimensional semiconductors have significantly contributed to the enhancement of room-temperature gas sensors. These advancements have focused on improving sensitivity, selectivity, and response/recovery times, with nanocomposites offering distinct advantages. The discussion here focuses on the use of semiconductor nanocomposites for gas sensing at room temperature, and provides a review of the latest synthesis techniques for these materials. This involves the precise adjustment of chemical compositions, microstructures, and morphologies. In addition, the design principles and potential functional mechanisms are examined. This is crucial for deepening the understanding and enhancing the operational capabilities of sensors. We also highlight the challenges faced in scaling up the production of nanocomposite materials. Looking ahead, semiconductor nanocomposites are expected to drive innovation in gas sensor technology due to their carefully crafted design and construction, paving the way for their extensive use in various sectors.
Collapse
Affiliation(s)
- Wenjian Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| | - Xinyi Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| | - Yuexi Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute of HUST, 1085 Meiquan Road, Wenzhou, Zhejiang 325035, P. R. China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| |
Collapse
|
3
|
Petrov DV, Tanichev AS. 13CH 4/ 12CH 4 sensing using Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124253. [PMID: 38603959 DOI: 10.1016/j.saa.2024.124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
The paper presents a technique for measuring the concentration of 13CH4 in natural methane using Raman spectroscopy. The peak positions and the relative scattering cross-sections of the Q-branches for the most intense vibrational bands of 13CH4 are determined. Features of the 13CH4/12CH4 ratio measurement methods using Q-branches of the ν1 and ν3 bands were considered. It was shown that the 13CH4/12CH4 ratio can be determined by simulation of the ν3 bands of these molecules without the use of experimental spectra. In our experiments the measurement error of δ13C value was 10 ‰ using the 100-s exposure spectrum at a gas pressure close to 1 atm recorded on the developed Raman spectrometer. In addition, the Raman spectra of alkanes (up to n-hexane) in the range of 2850-3050 cm-1 at a resolution of 0.4 cm-1 are presented, and their integrated intensities in the ranges of the characteristic bands of 13CH4 and 12CH4 are provided. The data obtained make it possible to expand the capabilities of Raman gas analyzers in the mud gas logging industry.
Collapse
Affiliation(s)
- Dmitry V Petrov
- Institute of Monitoring of Climatic and Ecological Systems, 634055 Tomsk, Russia; Tomsk State University, 634050 Tomsk, Russia.
| | - Aleksandr S Tanichev
- Institute of Monitoring of Climatic and Ecological Systems, 634055 Tomsk, Russia
| |
Collapse
|
4
|
Pavić I, Kaštelan N, Adamczyk A, Ivanda M. Enhancing Micro-Raman Spectroscopy: A Variable Spectral Resolution Instrument Using Zoom Lens Technology. SENSORS (BASEL, SWITZERLAND) 2024; 24:4284. [PMID: 39001063 PMCID: PMC11243961 DOI: 10.3390/s24134284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
Raman spectroscopy is a powerful analytical technique based on the inelastic scattering of photons. Conventional macro-Raman spectrometers are suitable for mass analysis but often lack the spatial resolution required to accurately examine microscopic regions of interest. For this reason, the development of micro-Raman spectrometers has been driven forward. However, even with micro-Raman spectrometers, high resolution is required to gain better insight into materials that provide low-intensity Raman signals. Here, we show the development of a micro-Raman spectrometer with implemented zoom lens technology. We found that by replacing a second collimating mirror in the monochromator with a zoom lens, the spectral resolution could be continuously adjusted at different zoom factors, i.e., high resolution was achieved at a higher zoom factor and lower spectral resolution was achieved at a lower zoom factor. A quantitative analysis of a micro-Raman spectrometer was performed and the spectral resolution was analysed by FWHM using the Gaussian fit. Validation was also performed by comparing the results obtained with those of a high-grade laboratory Raman spectrometer. A quantitative analysis was also performed using the ANOVA method and by assessing the signal-to-noise ratio between the two systems.
Collapse
Affiliation(s)
- Ivan Pavić
- Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, Ruđera Boškovića 37, 21000 Split, Croatia; (I.P.); (N.K.)
| | - Nediljko Kaštelan
- Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, Ruđera Boškovića 37, 21000 Split, Croatia; (I.P.); (N.K.)
| | - Arkadiusz Adamczyk
- Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, ul. Smidowicza 69, 81-127 Gdynia, Poland;
| | - Mile Ivanda
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Liu L, Liu R, Ma G, Feng S, Mu Y, Meng D, Wang S, Cai E. Online Monitoring of Seawater Carbon Dioxide Based on an Infrared Rear Beam Splitter. SENSORS (BASEL, SWITZERLAND) 2023; 23:6273. [PMID: 37514566 PMCID: PMC10386597 DOI: 10.3390/s23146273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The ocean is one of the most extensive ecosystems on Earth and can absorb large amounts of carbon dioxide. Changes in seawater carbon dioxide concentrations are one of the most important factors affecting marine ecosystems. Excess carbon dioxide can lead to ocean acidification, threatening the stability of marine ecosystems and species diversity. Dissolved carbon dioxide detection in seawater has great scientific significance. Conducting online monitoring of seawater carbon dioxide can help to understand the health status of marine ecosystems and to protect marine ecosystems. Current seawater detection equipment is large and costly. This study designed a low-cost infrared carbon dioxide detection system based on molecular theory. Using the HITRAN database, the absorption spectra and coefficients of carbon dioxide molecules under different conditions were calculated and derived, and a wavelength of 2361 cm-1 was selected as the measurement channel for carbon dioxide. In addition, considering the interference effect of direct light, an infrared post-splitting method was proposed to eliminate the interference of light and improve the detection accuracy of the system. The system was designed for the online monitoring of carbon dioxide in seawater, including a peristaltic pump to accelerate gas-liquid separation, an optical path structure, and carbon dioxide concentration inversion. The experimental results showed that the standard deviation of the gas test is 3.05, the standard deviation of the seawater test is 6.04, and the error range is within 20 ppm. The system can be flexibly deployed and has good stability and portability, which can meet the needs of the online monitoring of seawater carbon dioxide concentration.
Collapse
Affiliation(s)
- Luyin Liu
- The School of Electronic Information, Qingdao University, Qingdao 266071, China
| | - Ruzhang Liu
- The School of Electronic Information, Qingdao University, Qingdao 266071, China
| | - Guochao Ma
- The School of Electronic Information, Qingdao University, Qingdao 266071, China
| | - Shanshan Feng
- The School of Electronic Information, Qingdao University, Qingdao 266071, China
| | - Yuanhui Mu
- The School of Electronic Information, Qingdao University, Qingdao 266071, China
| | - Dexi Meng
- The School of Electronic Information, Qingdao University, Qingdao 266071, China
| | - Shuying Wang
- The School of Electronic Information, Qingdao University, Qingdao 266071, China
| | - Enlin Cai
- The School of Electronic Information, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Cai Y, Xu G, Yang D, Tian H, Zhou F, Guo J. On-line multi-gas component measurement in the mud logging process based on Raman spectroscopy combined with a CNN-LSTM-AM hybrid model. Anal Chim Acta 2023; 1259:341200. [PMID: 37100477 DOI: 10.1016/j.aca.2023.341200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
The qualitative and quantitative analysis of gas components extracted from drilling fluids during mud logging is essential for identifying drilling anomalies, reservoir characteristics, and hydrocarbon properties during oilfield recovery. Gas chromatography (GC) and gas mass spectrometers (GMS) are currently used for the online analysis of gases throughout the mud logging process. Nevertheless, these methods have limitations, including expensive equipment, high maintenance costs, and lengthy detection periods. Raman spectroscopy can be applied to the online quantification of gases at mud logging sites due to its in-situ analysis, high resolution, and rapid detection. However, laser power fluctuations, field vibrations, and the overlapping of characteristic peaks of different gases in the existing online detection system of Raman spectroscopy can affect the quantitative accuracy of the model. For these reasons, a gas Raman spectroscopy system with a high reliability, low detection limits, and increased sensitivity has been designed and applied to the online quantification of gases in the mud logging process. The near-concentric cavity structure is used to improve the signal acquisition module in the gas Raman spectroscopic system, thus enhancing the Raman spectral signal of the gases. One-dimensional convolutional neural networks (1D-CNN) combined with long- and short-term memory networks (LSTM) are applied to construct quantitative models based on the continuous acquisition of Raman spectra of gas mixtures. In addition, the attention mechanism is used to futher improve the quantitative model performance. The results indicated that our proposed method has the capability to continuously on-line detect 10 hydrocarbon and non-hydrocarbon gases in the mud logging process. The limitation of detection (LOD) for different gas components based on the proposed method are in the range of 0.0035%-0.0223%. Based on the proposed CNN-LSTM-AM model, the average detection errors of different gas components range from 0.899% to 3.521%, and their maximum detection errors range from 2.532% to 11.922%. These results demonstrate that our proposed method has a high accuracy, low deviation, and good stability and can be applied to the on-line gas analysis process in the mud logging field.
Collapse
Affiliation(s)
- Yaoyi Cai
- College of Engineering and Design, Hunan Normal University, Changsha, Hunan, 410083, PR China
| | - Guorong Xu
- College of Physics and Opto-electronic Engineering, Ocean University of China, Qingdao, Shandong, 266100, PR China
| | - Dewang Yang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China
| | - Haoyue Tian
- College of Physics and Opto-electronic Engineering, Ocean University of China, Qingdao, Shandong, 266100, PR China
| | - Faju Zhou
- Sinopec Shengli Petroleum Engineering Co. LTD. Geological Logging Company, Dongying, Shandong, 257000, PR China
| | - Jinjia Guo
- College of Physics and Opto-electronic Engineering, Ocean University of China, Qingdao, Shandong, 266100, PR China.
| |
Collapse
|
7
|
Singh J, Muller A. High-Precision Trace Hydrogen Sensing by Multipass Raman Scattering. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115171. [PMID: 37299898 DOI: 10.3390/s23115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Despite its growing importance in the energy generation and storage industry, the detection of hydrogen in trace concentrations remains challenging, as established optical absorption methods are ineffective in probing homonuclear diatomics. Besides indirect detection approaches using, e.g., chemically sensitized microdevices, Raman scattering has shown promise as an alternative direct method of unambiguous hydrogen chemical fingerprinting. We investigated the suitability of feedback-assisted multipass spontaneous Raman scattering for this task and examined the precision with which hydrogen can be sensed at concentrations below 2 parts per million. A limit of detection of 60, 30, and 20 parts per billion was obtained at a pressure of 0.2 MPa in a 10-min-long, 120-min-long, and 720-min-long measurement, respectively, with the lowest concentration probed being 75 parts per billion. Various methods of signal extraction were compared, including asymmetric multi-peak fitting, which allowed the resolution of concentration steps of 50 parts per billion, determining the ambient air hydrogen concentration with an uncertainty level of 20 parts per billion.
Collapse
Affiliation(s)
- Jaspreet Singh
- Physics Department, University of South Florida, Tampa, FL 33620, USA
| | - Andreas Muller
- Physics Department, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
8
|
Tanichev AS, Petrov DV. Pressure broadening in Raman spectra of CH 4-N 2, CH 4-CO 2, and CH 4-C 2H 6 gas mixtures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122396. [PMID: 36696859 DOI: 10.1016/j.saa.2023.122396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Different molecular environments change the spectrum of a given gas sample involved in a mixture compared to the spectrum of a pure gas. It is necessary to account for this effect to improve the accuracy of the analysis of the natural gas composition by Raman spectroscopy. First, the change in the main components of natural gas (methane, nitrogen, carbon dioxide, and ethane) must be considered. This work is devoted to the mutual influence of CH4-N2, CH4-CO2, and CH4-C2H6 on their characteristic Raman bands in the range of 300-2500 cm-1. The half-width and asymmetry of the Q branches of N2, CO2, and C2H6 as a function of methane concentration were obtained in the range of 1-50 bar. The averaged broadening coefficients of the rotational-vibrational lines of the ν2 band of CH4 perturbed by N2, CO2, and C2H6 are measured. A high-sensitivity spectrometer with a resolution of 0.5 cm-1 based on spontaneous Raman scattering was used to obtain reliable results. The algorithm and all the necessary parameters for simulating the effect of various molecular environments on the Raman bands of the main components of natural gas are presented.
Collapse
Affiliation(s)
- Aleksandr S Tanichev
- Laboratory of Ecological Instrumentation, Institute of Monitoring of Climatic and Ecological Systems, 634055 Tomsk, Russia.
| | - Dmitry V Petrov
- Laboratory of Ecological Instrumentation, Institute of Monitoring of Climatic and Ecological Systems, 634055 Tomsk, Russia; Department of Optics and Spectroscopy, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
9
|
Tanichev AS, Petrov DV. Broadening of the ν 2 Raman Band of CH 4 by C 3H 8 and C 4H 10. Molecules 2023; 28:molecules28083365. [PMID: 37110599 PMCID: PMC10146573 DOI: 10.3390/molecules28083365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Raman spectroscopy is a promising method for the analysis of natural gas. It is necessary to account for the broadening effects on spectral lines to improve measurement accuracy. In this study, the broadening coefficients for methane lines in the region of the ν2 band perturbed by propane, n-butane, and isobutane at room temperature were measured. We estimated the measurement errors of the concentration of oxygen and carbon dioxide in the case of neglecting the broadening effects on the methane spectrum by the pressure of C2-C6 alkanes. The obtained data are suited for the correct simulation of the methane spectrum in the hydrocarbon-bearing gases and can be used to improve the accuracy of the analysis of natural gas by Raman spectroscopy.
Collapse
Affiliation(s)
- Aleksandr S Tanichev
- Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Dmitry V Petrov
- Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, 634055 Tomsk, Russia
- Department of Optics and Spectroscopy, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
10
|
Spiske F, Dirauf MP, Braeuer AS. Aerogel-Lined Capillaries for Raman Signal Gain of Aqueous Mixtures. SENSORS 2022; 22:s22124388. [PMID: 35746173 PMCID: PMC9228469 DOI: 10.3390/s22124388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023]
Abstract
We report an experimental study on the gain of the Raman signal of aqueous mixtures and liquid water when confined in aerogel-lined capillaries of various lengths of up to 20 cm and various internal diameters between 530 and 1000 µm. The lining was made of hydrophobised silica aerogel, and the carrier capillary body consisted of fused silica or borosilicate glass. Compared to the Raman signal detected from bulk liquid water with the same Raman probe, a Raman signal 27 times as large was detected when the liquid water was confined in a 20 cm-long capillary with an internal diameter of 700 µm. In comparison with silver-lined capillaries of the same length and same internal diameter, the aerogel-lined capillaries featured a superior Raman signal gain and a longer gain stability when exposed to mixtures of water, sugar, ethanol and acetic acid.
Collapse
|
11
|
Trends in pharmaceutical analysis and quality control by modern Raman spectroscopic techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Depolarization Ratio of the ν1 Raman Band of Pure CH4 and Perturbed by N2 and CO2. Molecules 2021; 27:molecules27010144. [PMID: 35011375 PMCID: PMC8746360 DOI: 10.3390/molecules27010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
In this work, the effect of nitrogen and carbon dioxide on the depolarization ratio of the ν1 band of methane in the pressure range of 0.1–5 MPa is studied. A high-sensitivity single-pass Raman spectrometer was used to obtain accurate results. Moreover, we took into account the overlap of the ν1 band by the ν3 and ν2 + ν4 bands using the simulation of their spectra. The depolarization ratio of the ν1 band in pure methane is within 0–0.001, and the effect of nitrogen and carbon dioxide on this parameter is negligible in the indicated pressure range. The obtained results are useful for correct simulation of the Raman spectrum of methane at different pressures, which is necessary to improve the accuracy of gas analysis methods using Raman spectroscopy.
Collapse
|
13
|
Li M, Liu Q, Yang D, Guo J, Si G, Wu L, Zheng R. Underwater In Situ Dissolved Gas Detection Based on Multi-Reflection Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2021; 21:4831. [PMID: 34300571 PMCID: PMC8309903 DOI: 10.3390/s21144831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
The detection of dissolved gases in seawater plays an important role in oceanic observations and exploration. As a potential technique for oceanic applications, Raman spectroscopy has been successfully applied in hydrothermal vents and cold seep fluids, but it has not yet been used in common seawater due to the technique's lower sensitivity. In this work, we present a highly sensitive underwater in situ Raman spectroscopy system for dissolved gas detection in common seawater. Considering the difficulty of underwater degassing and in situ detection, we designed a near-concentric cavity to improve the sensitivity, with a miniature gas sample chamber featuring an inner volume of 1 mL placed inside the cavity to reach equilibrium in a short period of time. According to the 3σ criteria, the detection limits of this system for CO2, O2, and H2 were calculated to be 72.8, 44.0, and 27.7 ppm, respectively. Using a hollow fiber membrane degasser with a large surface area, the CO2 signal was found to be clearly visible in 30 s at a flow rate of 550 mL/min. Moreover, we deployed the system in Qingdao's offshore seawater, and the field test showed that this system is capable of successfully detecting in situ the multiple gases dissolved in the seawater simultaneously.
Collapse
Affiliation(s)
- Meng Li
- College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; (M.L.); (Q.L.); (G.S.); (L.W.); (R.Z.)
| | - Qingsheng Liu
- College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; (M.L.); (Q.L.); (G.S.); (L.W.); (R.Z.)
| | - Dewang Yang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266100, China;
| | - Jinjia Guo
- College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; (M.L.); (Q.L.); (G.S.); (L.W.); (R.Z.)
| | - Ganshang Si
- College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; (M.L.); (Q.L.); (G.S.); (L.W.); (R.Z.)
| | - Lulu Wu
- College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; (M.L.); (Q.L.); (G.S.); (L.W.); (R.Z.)
| | - Ronger Zheng
- College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; (M.L.); (Q.L.); (G.S.); (L.W.); (R.Z.)
| |
Collapse
|