Zhang T, Hua S, Li Z, Wang W, Liu S. Sensitive vapor detection with hollow thin film arrays.
OPTICS EXPRESS 2022;
30:496-504. [PMID:
35201225 DOI:
10.1364/oe.442692]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
In this manuscript, we explored the performance of a hollow thin film array (HTFA) for the detection of HCl vapor based on fluorescence quenching. The HTFA structure was fabricated by manually stacking layers of an active thin film and a supporting film, alternately, with a hollow structure in each supporting film. The total penetration depth of vapor molecules in the HTFA sample is 2n times increased, where n is the layer number of the active thin film. We tested the sensing performance of the HTFA sample using fluorescence emission and laser emission in a Fabry-Pérot (FP) microcavity. In the fluorescence sensing, the sensing efficiency increases with the vapor concentration, and can be as high as 80% with a vapor concentration of 400 ppm. While in the laser sensing, the efficiency can achieve 100% with an external pump intensity three times of the lasing threshold at a vapor concentration of 85 ppm. The HTFA sample is not only suitable for vapor detection but also suitable for molecule detection in liquid.
Collapse