1
|
Moulaei K, Afshari L, Moulaei R, Sabet B, Mousavi SM, Afrash MR. Explainable artificial intelligence for stroke prediction through comparison of deep learning and machine learning models. Sci Rep 2024; 14:31392. [PMID: 39733046 DOI: 10.1038/s41598-024-82931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Failure to predict stroke promptly may lead to delayed treatment, causing severe consequences like permanent neurological damage or death. Early detection using deep learning (DL) and machine learning (ML) models can enhance patient outcomes and mitigate the long-term effects of strokes. The aim of this study is to compare these models, exploring their efficacy in predicting stroke. This study analyzed a dataset comprising 663 records from patients hospitalized at Hazrat Rasool Akram Hospital in Tehran, Iran, including 401 healthy individuals and 262 stroke patients. A total of eight established ML (SVM, XGB, KNN, RF) and DL (DNN, FNN, LSTM, CNN) models were utilized to predict stroke. Techniques such as 10-fold cross-validation and hyperparameter tuning were implemented to prevent overfitting. The study also focused on interpretability through Shapley Additive Explanations (SHAP). The evaluation of model's performance was based on accuracy, specificity, sensitivity, F1-score, and ROC curve metrics. Among DL models, LSTM showed superior sensitivity at 96.15%, while FNN exhibited better specificity (96.0%), accuracy (96.0%), F1-score (95.0%), and ROC (98.0%) among DL models. For ML models, RF displayed higher sensitivity (99.9%), accuracy (99.0%), specificity (100%), F1-score (99.0%), and ROC (99.9%). Overall, RF outperformed all models, while DL models surpassed ML models in most metrics except for RF. DL models (CNN, LSTM, DNN, FNN) achieved sensitivities from 93.0 to 96.15%, specificities from 80.0 to 96.0%, accuracies from 92.0 to 96.0%, F1-scores from 87.34 to 95.0%, and ROC scores from 95.0 to 98.0%. In contrast, ML models (KNN, XGB, SVM) showed sensitivities between 29.0% and 94.0%, specificities between 89.47% and 96.0%, accuracies between 71.0% and 95.0%, F1-scores between 44.0% and 95.0%, and ROC scores between 64.0% and 95.0%. This study demonstrates the efficacy of DL and ML models in predicting stroke, with the RF models outperforming all others in key metrics. While DL models generally surpassed ML models, RF's exceptional performance highlights the potential of combining these technologies for early stroke detection, significantly improving patient outcomes by preventing severe consequences like permanent neurological damage or death.
Collapse
Affiliation(s)
- Khadijeh Moulaei
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran
- Artificial Intelligence in Medical Sciences Research Center, Smart University of Medical Sciences, Tehran, Iran
| | - Lida Afshari
- Department of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Moulaei
- Department of Orthopedic and Trauma Surgery, Shariati Hospital and School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Sabet
- Artificial Intelligence in Medical Sciences Research Center, Smart University of Medical Sciences, Tehran, Iran
- Department of Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mousavi
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afrash
- Artificial Intelligence in Medical Sciences Research Center, Smart University of Medical Sciences, Tehran, Iran.
- Department of Artificial Intelligence in Medical Sciences Research Center, Smart University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang Y, Rao C, Cheng Q, Yang J. Cardiovascular disease prediction model based on patient behavior patterns in the context of deep learning: a time-series data analysis perspective. Front Psychiatry 2024; 15:1418969. [PMID: 39676910 PMCID: PMC11640863 DOI: 10.3389/fpsyt.2024.1418969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
To address the limitations of traditional cardiovascular disease prediction models in capturing dynamic changes and personalized differences in patients, we propose a novel LGAP model based on time-series data analysis. This model integrates Long Short-Term Memory (LSTM) networks, Graph Neural Networks (GNN), and Multi-Head Attention mechanisms. By combining patients' time-series data (such as medical records, physical parameters, and activity data) with relationship graph data, the model effectively identifies patient behavior patterns and their interrelationships, thereby improving the accuracy and generalization of cardiovascular disease risk prediction. Experimental results show that LGAP outperforms traditional models on datasets such as PhysioNet and NHANES, particularly in prediction accuracy and personalized health management. The introduction of LGAP offers a new approach to enhancing the precision of cardiovascular disease prediction and the development of customized patient care plans.
Collapse
Affiliation(s)
- Yubo Wang
- College of Information Science and Engineering, Northeast University, Shenyang, China
| | | | | | | |
Collapse
|
3
|
J M SL, P S. Unveiling the potential of machine learning approaches in predicting the emergence of stroke at its onset: a predicting framework. Sci Rep 2024; 14:20053. [PMID: 39209884 PMCID: PMC11362165 DOI: 10.1038/s41598-024-70354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
A stroke is a dangerous, life-threatening disease that mostly affects people over 65, but an unhealthy diet is also contributing to the development of strokes at younger ages. Strokes can be treated successfully if they are identified early enough, and suitable therapies are available. The purpose of this study is to develop a stroke prediction model that will improve stroke prediction effectiveness as well as accuracy. Predicting whether someone is suffering from a stroke or not can be accomplished with this proposed machine learning algorithm. In this research, various machine learning techniques are evaluated for predicting stroke on the healthcare stroke dataset. The feature selection algorithms used here are gradient boosting and random forest, and classifiers include the decision tree classifier, Support Vector Machine (SVM) classifier, logistic regression classifier, gradient boosting classifier, random forest classifier, K neighbors classifier, and Xtreme gradient boosting classifier. In this process, different machine-learning approaches are employed to test predictive methods on different data samples. As a result obtained from the different methods applied, and the comparison of different classification models, the random forest model offers an accuracy rate of 98%.
Collapse
Affiliation(s)
- Sheela Lavanya J M
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
| | - Subbulakshmi P
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India.
| |
Collapse
|
4
|
Wijaya R, Saeed F, Samimi P, Albarrak AM, Qasem SN. An Ensemble Machine Learning and Data Mining Approach to Enhance Stroke Prediction. Bioengineering (Basel) 2024; 11:672. [PMID: 39061754 PMCID: PMC11274138 DOI: 10.3390/bioengineering11070672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Stroke poses a significant health threat, affecting millions annually. Early and precise prediction is crucial to providing effective preventive healthcare interventions. This study applied an ensemble machine learning and data mining approach to enhance the effectiveness of stroke prediction. By employing the cross-industry standard process for data mining (CRISP-DM) methodology, various techniques, including random forest, ExtraTrees, XGBoost, artificial neural network (ANN), and genetic algorithm with ANN (GANN) were applied on two benchmark datasets to predict stroke based on several parameters, such as gender, age, various diseases, smoking status, BMI, HighCol, physical activity, hypertension, heart disease, lifestyle, and others. Due to dataset imbalance, Synthetic Minority Oversampling Technique (SMOTE) was applied to the datasets. Hyperparameter tuning optimized the models via grid search and randomized search cross-validation. The evaluation metrics included accuracy, precision, recall, F1-score, and area under the curve (AUC). The experimental results show that the ensemble ExtraTrees classifier achieved the highest accuracy (98.24%) and AUC (98.24%). Random forest also performed well, achieving 98.03% in both accuracy and AUC. Comparisons with state-of-the-art stroke prediction methods revealed that the proposed approach demonstrates superior performance, indicating its potential as a promising method for stroke prediction and offering substantial benefits to healthcare.
Collapse
Affiliation(s)
- Richard Wijaya
- College of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; (R.W.); (P.S.)
| | - Faisal Saeed
- College of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; (R.W.); (P.S.)
| | - Parnia Samimi
- College of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; (R.W.); (P.S.)
| | - Abdullah M. Albarrak
- Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.M.A.); (S.N.Q.)
| | - Sultan Noman Qasem
- Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.M.A.); (S.N.Q.)
| |
Collapse
|
5
|
Hastings N, Samuel D, Ansari AN, Kaurani P, J JW, Bhandary VS, Gautam P, Tayyil Purayil AL, Hassan T, Dinesh Eshwar M, Nuthalapati BST, Pothuri JK, Ali N. The Role of Artificial Intelligence-Powered Imaging in Cerebrovascular Accident Detection. Cureus 2024; 16:e59768. [PMID: 38846243 PMCID: PMC11153838 DOI: 10.7759/cureus.59768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
Cerebrovascular accidents (CVAs) often occur suddenly and abruptly, leaving patients with long-lasting disabilities that place a huge emotional and economic burden on everyone involved. CVAs result when emboli or thrombi travel to the brain and impede blood flow; the subsequent lack of oxygen supply leads to ischemia and eventually tissue infarction. The most important factor determining the prognosis of CVA patients is time, specifically the time from the onset of disease to treatment. Artificial intelligence (AI)-assisted neuroimaging alleviates the time constraints of analysis faced using traditional diagnostic imaging modalities, thus shortening the time from diagnosis to treatment. Numerous recent studies support the increased accuracy and processing capabilities of AI-assisted imaging modalities. However, the learning curve is steep, and huge barriers still exist preventing a full-scale implementation of this technology. Thus, the potential for AI to revolutionize medicine and healthcare delivery demands attention. This paper aims to elucidate the progress of AI-powered imaging in CVA diagnosis while considering traditional imaging techniques and suggesting methods to overcome adoption barriers in the hope that AI-assisted neuroimaging will be considered normal practice in the near future. There are multiple modalities for AI neuroimaging, all of which require collecting sufficient data to establish inclusive, accurate, and uniform detection platforms. Future efforts must focus on developing methods for data harmonization and standardization. Furthermore, transparency in the explainability of these technologies needs to be established to facilitate trust between physicians and AI-powered technology. This necessitates considerable resources, both financial and expertise wise which are not available everywhere.
Collapse
Affiliation(s)
- Natasha Hastings
- School of Medicine, St. George's University School of Medicine, St. George's, GRD
| | - Dany Samuel
- Radiology, Medical University of Varna, Varna, BGR
| | - Aariz N Ansari
- Internal Medicine, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Purvi Kaurani
- Neurology, Dnyandeo Yashwantrao (DY) Patil University School of Medicine, Navi Mumbai, IND
| | - Jenkin Winston J
- Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, IND
| | - Vaibhav S Bhandary
- Radiology, Srinivas Institute of Medical Sciences and Research Center, Mangaluru, IND
| | - Prabin Gautam
- Emergency Medicine, Kettering General Hospital, Kettering, GBR
| | | | - Taimur Hassan
- Neurosurgery, Houston Methodist Neurological Institute, Houston, USA
| | | | | | | | - Noor Ali
- Medicine and Surgery, Dubai Medical College, Dubai, ARE
| |
Collapse
|
6
|
Das S, Nayak SP, Sahoo B, Nayak SC. Machine Learning in Healthcare Analytics: A State-of-the-Art Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING 2024. [DOI: 10.1007/s11831-024-10098-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 01/06/2025]
|
7
|
Wu M, Yu K, Zhao Z, Zhu B. Knowledge structure and global trends of machine learning in stroke over the past decade: A scientometric analysis. Heliyon 2024; 10:e24230. [PMID: 38288018 PMCID: PMC10823080 DOI: 10.1016/j.heliyon.2024.e24230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Objective Machine learning (ML) models have been widely applied in stroke prediction, diagnosis, treatment, and prognosis assessment. We aimed to conduct a comprehensive scientometrics analysis of studies related to ML in stroke and reveal its current status, knowledge structure, and global trends. Methods All documents related to ML in stroke were retrieved from the Web of Science database on March 15, 2023. We refined the documents by including only original articles and reviews in the English language. The literature published over the past decade was imported into scientometrics software for influence detection and collaborative network analysis. Results 2389 related publications were included. The annual publication outputs demonstrated explosive growth, with an average growth rate of 63.99 %. Among the 90 countries/regions involved, the United States (729 articles) and China (636 articles) were the most productive countries. Frontiers in Neurology was the most prolific journal with 94 articles. 234 highly cited articles, each with more than 31 citations, were detected. Keyword analysis revealed a total of 5333 keywords, with a predominant focus on the application of ML models in the early diagnosis, classification, and prediction of "acute ischemic stroke" and "atrial fibrillation-related stroke". The keyword "classification" had the first and longest burst, spanning from 2013 to 2018. 'Upport vector machine' got the strongest burst strength with 6.2. Keywords such as 'mechanical thrombectomy', 'expression', and 'prognosis' experienced bursts in 2022 and have continued to be prominent. Conclusion The applications of ML in stroke are increasingly diverse and extensive, with researchers showing growing interest over the past decade. However, the clinical application of ML in stroke is still in its early stages, and several limitations and challenges need to be addressed for its widespread adoption in clinical practice.
Collapse
Affiliation(s)
- Mingfen Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
8
|
Koska IO, Selver A. Artificial Intelligence in Stroke Imaging: A Comprehensive Review. Eurasian J Med 2023; 55:91-97. [PMID: 39109827 PMCID: PMC11075039 DOI: 10.5152/eurasianjmed.2023.23347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 08/11/2024] Open
Abstract
The aging population challenges the health-care system with chronic diseases. Cerebrovascular diseases are important components of these chronic conditions. Stroke is the acute cessation of blood in the brain, which can lead to rapid tissue loss. Therefore, fast, accurate, and reliable automatic methods are required to facilitate stroke management. The performance of artificial intelligence (AI) methods is increasing in all domains. Vision tasks, including natural images and medical images, are particularly benefiting from the skills of AI models. The AI methods that can be applied to stroke imaging have a broad range, including classical machine learning tools such as support vector machines, random forests, logistic regression, and linear discriminant analysis, as well as deep learning models, such as convolutional neural networks, recurrent neural networks, autoencoders, and U-Net. Both tools can be applied to various aspects of stroke management, including time-to-event onset determination, stroke confirmation, large vessel occlusion detection, difusion restriction, perfusion deficit, core and penumbra identification, afected region segmentation, and functional outcome prediction. While building these AI models, maximum care should be exercised in order to reduce bias and build generalizable models. One of the most important prerequisites for building unbiased models is collecting large, diverse, and quality data that reflects the underlying population well and splitting the training and testing parts in a way that both represent a similar distribution. Explainability and trustworthiness are other important properties of machine learning models that could be widely adopted in clinical practices.
Collapse
Affiliation(s)
- Ilker Ozgur Koska
- Department of Radiology, Behçet Uz Children’s Hospital, İzmir, Turkey
- Department of Advanced Biomedical Technologies, Dokuz Eylül University, İzmir, Turkey
| | - Alper Selver
- İzmir Health Technologies Development and Accelerator (BioIzmir), Dokuz Eylül University, İzmir, Turkey
- Department of Electrical and Electronics Engineering, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
9
|
Mao S, Sejdic E. A Review of Recurrent Neural Network-Based Methods in Computational Physiology. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:6983-7003. [PMID: 35130174 PMCID: PMC10589904 DOI: 10.1109/tnnls.2022.3145365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Artificial intelligence and machine learning techniques have progressed dramatically and become powerful tools required to solve complicated tasks, such as computer vision, speech recognition, and natural language processing. Since these techniques have provided promising and evident results in these fields, they emerged as valuable methods for applications in human physiology and healthcare. General physiological recordings are time-related expressions of bodily processes associated with health or morbidity. Sequence classification, anomaly detection, decision making, and future status prediction drive the learning algorithms to focus on the temporal pattern and model the nonstationary dynamics of the human body. These practical requirements give birth to the use of recurrent neural networks (RNNs), which offer a tractable solution in dealing with physiological time series and provide a way to understand complex time variations and dependencies. The primary objective of this article is to provide an overview of current applications of RNNs in the area of human physiology for automated prediction and diagnosis within different fields. Finally, we highlight some pathways of future RNN developments for human physiology.
Collapse
|
10
|
Raghavendra U, Gudigar A, Paul A, Goutham TS, Inamdar MA, Hegde A, Devi A, Ooi CP, Deo RC, Barua PD, Molinari F, Ciaccio EJ, Acharya UR. Brain tumor detection and screening using artificial intelligence techniques: Current trends and future perspectives. Comput Biol Med 2023; 163:107063. [PMID: 37329621 DOI: 10.1016/j.compbiomed.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
A brain tumor is an abnormal mass of tissue located inside the skull. In addition to putting pressure on the healthy parts of the brain, it can lead to significant health problems. Depending on the region of the brain tumor, it can cause a wide range of health issues. As malignant brain tumors grow rapidly, the mortality rate of individuals with this cancer can increase substantially with each passing week. Hence it is vital to detect these tumors early so that preventive measures can be taken at the initial stages. Computer-aided diagnostic (CAD) systems, in coordination with artificial intelligence (AI) techniques, have a vital role in the early detection of this disorder. In this review, we studied 124 research articles published from 2000 to 2022. Here, the challenges faced by CAD systems based on different modalities are highlighted along with the current requirements of this domain and future prospects in this area of research.
Collapse
Affiliation(s)
- U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Aritra Paul
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - T S Goutham
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mahesh Anil Inamdar
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ajay Hegde
- Consultant Neurosurgeon Manipal Hospitals, Sarjapur Road, Bangalore, India
| | - Aruna Devi
- School of Education and Tertiary Access, University of the Sunshine Coast, Caboolture Campus, Australia
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore, 599494, Singapore
| | - Ravinesh C Deo
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW, 2010, Australia; School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Torino, Italy
| | - Edward J Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
11
|
Venkatachala Appa Swamy M, Periyasamy J, Thangavel M, Khan SB, Almusharraf A, Santhanam P, Ramaraj V, Elsisi M. Design and Development of IoT and Deep Ensemble Learning Based Model for Disease Monitoring and Prediction. Diagnostics (Basel) 2023; 13:diagnostics13111942. [PMID: 37296794 DOI: 10.3390/diagnostics13111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
With the rapidly increasing reliance on advances in IoT, we persist towards pushing technology to new heights. From ordering food online to gene editing-based personalized healthcare, disruptive technologies like ML and AI continue to grow beyond our wildest dreams. Early detection and treatment through AI-assisted diagnostic models have outperformed human intelligence. In many cases, these tools can act upon the structured data containing probable symptoms, offer medication schedules based on the appropriate code related to diagnosis conventions, and predict adverse drug effects, if any, in accordance with medications. Utilizing AI and IoT in healthcare has facilitated innumerable benefits like minimizing cost, reducing hospital-obtained infections, decreasing mortality and morbidity etc. DL algorithms have opened up several frontiers by contributing towards healthcare opportunities through their ability to understand and learn from different levels of demonstration and generalization, which is significant in data analysis and interpretation. In contrast to ML which relies more on structured, labeled data and domain expertise to facilitate feature extractions, DL employs human-like cognitive abilities to extract hidden relationships and patterns from uncategorized data. Through the efficient application of DL techniques on the medical dataset, precise prediction, and classification of infectious/rare diseases, avoiding surgeries that can be preventable, minimization of over-dosage of harmful contrast agents for scans and biopsies can be reduced to a greater extent in future. Our study is focused on deploying ensemble deep learning algorithms and IoT devices to design and develop a diagnostic model that can effectively analyze medical Big Data and diagnose diseases by identifying abnormalities in early stages through medical images provided as input. This AI-assisted diagnostic model based on Ensemble Deep learning aims to be a valuable tool for healthcare systems and patients through its ability to diagnose diseases in the initial stages and present valuable insights to facilitate personalized treatment by aggregating the prediction of each base model and generating a final prediction.
Collapse
Affiliation(s)
| | - Jayalakshmi Periyasamy
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Muthamilselvan Thangavel
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Surbhi B Khan
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon
- Department of Data Science, School of Science, Engineering and Environment, University of Sanford, Manchester M5 4WT, UK
| | - Ahlam Almusharraf
- Department of Business Administration, College of Business and Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Prasanna Santhanam
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Vijayan Ramaraj
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Mahmoud Elsisi
- Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807618, Taiwan
- Department of Electrical Engineering, Faculty of Engineering (Shoubra), Benha University, 108 Shoubra St., Cairo P.O. Box 11241, Egypt
| |
Collapse
|
12
|
Yu X, Zhou S, Zou H, Wang Q, Liu C, Zang M, Liu T. Survey of deep learning techniques for disease prediction based on omics data. HUMAN GENE 2023; 35:201140. [DOI: 10.1016/j.humgen.2022.201140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Yang WX, Wang FF, Pan YY, Xie JQ, Lu MH, You CG. Comparison of ischemic stroke diagnosis models based on machine learning. Front Neurol 2022; 13:1014346. [PMID: 36545400 PMCID: PMC9762505 DOI: 10.3389/fneur.2022.1014346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 12/11/2022] Open
Abstract
Background The incidence, prevalence, and mortality of ischemic stroke (IS) continue to rise, resulting in a serious global disease burden. The prediction models have a great value in the early prediction and diagnosis of IS. Methods The R software was used to screen the differentially expressed genes (DEGs) of IS and control samples in the datasets GSE16561, GSE58294, and GSE37587 and analyze DEGs for enrichment analysis. The feature genes of IS were obtained by several machine learning algorithms, including the least absolute shrinkage and selector operation (LASSO) logistic regression, the support vector machine-recursive feature elimination (SVM-RFE), and the Random Forest (RF). The IS diagnostic models were constructed based on transcriptomics by machine learning and artificial neural network (ANN). Results A total of 69 DEGs, mainly involved in immune and inflammatory responses, were identified. The pathways enriched in the IS group were complement and coagulation cascades, lysosome, PPAR signaling pathway, regulation of autophagy, and toll-like receptor signaling pathway. The feature genes selected by LASSO, SVM-RFE, and RF were 17, 10, and 12, respectively. The area under the curve (AUC) of the LASSO model in the training dataset, GSE22255, and GSE195442 was 0.969, 0.890, and 1.000. The AUC of the SVM-RFE model was 0.957, 0.805, and 1.000, respectively. The AUC of the RF model was 0.947, 0.935, and 1.000, respectively. The models have good sensitivity, specificity, and accuracy. The AUC of the LASSO+ANN, SVM-RFE+ANN, and RF+ANN models was 1.000, 0.995, and 0.997, respectively, in the training dataset. However, the AUC of LASSO+ANN, SVM-RFE+ANN, and RF+ANN models was 0.688, 0.605, and 0.619, respectively, in the GSE22255 dataset. The AUC of the LASSO+ANN and RF+ANN models was 0.740 and 0.630, respectively, in the GSE195442 dataset. In the training dataset, the sensitivity, specificity, and accuracy of the LASSO+ANN model were 1.000, 1.000, and 1.000, respectively; of the SVM-RFE+ANN model were 0.946, 0.982, and 0.964, respectively; and of the RF+ANN model were 0.964, 1.000, and 0.982, respectively. In the test datasets, the sensitivity was very satisfactory; however, the specificity and accuracy were not good. Conclusion The LASSO, SVM-RFE, and RF models have good prediction abilities. However, the ANN model is efficient at classifying positive samples and is unsuitable at classifying negative samples.
Collapse
Affiliation(s)
- Wan-Xia Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang-Fang Wang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Yun-Yan Pan
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jian-Qin Xie
- Anesthesiology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Ming-Hua Lu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China,*Correspondence: Chong-Ge You
| |
Collapse
|
14
|
Cui L, Fan Z, Yang Y, Liu R, Wang D, Feng Y, Lu J, Fan Y. Deep Learning in Ischemic Stroke Imaging Analysis: A Comprehensive Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2456550. [PMID: 36420096 PMCID: PMC9678444 DOI: 10.1155/2022/2456550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 09/15/2023]
Abstract
Ischemic stroke is a cerebrovascular disease with a high morbidity and mortality rate, which poses a serious challenge to human health and life. Meanwhile, the management of ischemic stroke remains highly dependent on manual visual analysis of noncontrast computed tomography (CT) or magnetic resonance imaging (MRI). However, artifacts and noise of the equipment as well as the radiologist experience play a significant role on diagnostic accuracy. To overcome these defects, the number of computer-aided diagnostic (CAD) methods for ischemic stroke is increasing substantially during the past decade. Particularly, deep learning models with massive data learning capabilities are recognized as powerful auxiliary tools for the acute intervention and guiding prognosis of ischemic stroke. To select appropriate interventions, facilitate clinical practice, and improve the clinical outcomes of patients, this review firstly surveys the current state-of-the-art deep learning technology. Then, we summarized the major applications in acute ischemic stroke imaging, particularly in exploring the potential function of stroke diagnosis and multimodal prognostication. Finally, we sketched out the current problems and prospects.
Collapse
Affiliation(s)
- Liyuan Cui
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiyuan Fan
- Centre of Intelligent Medical Technology and Equipment, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingjian Yang
- School of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Rui Liu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dajiang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingying Feng
- School of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Jiahui Lu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifeng Fan
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
A Novel Deep Transfer Learning Approach Based on Depth-Wise Separable CNN for Human Posture Detection. INFORMATION 2022. [DOI: 10.3390/info13110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human posture classification (HPC) is the process of identifying a human pose from a still image or moving image that was recorded by a digicam. This makes it easier to keep a record of people’s postures, which is helpful for many things. The intricate surroundings that are depicted in the image, such as occlusion and the camera view angle, make HPC a difficult process. Consequently, the development of a reliable HPC system is essential. This study proposes the “DeneSVM”, an innovative deep transfer learning-based classification model that pulls characteristics from image datasets to detect and classify human postures. The paradigm is intended to classify the four primary postures of lying, bending, sitting, and standing. These positions are classes of sitting, bending, lying, and standing. The Silhouettes for Human Posture Recognition dataset has been used to train, validate, test, and analyze the suggested model. The DeneSVM model attained the highest test precision (94.72%), validation accuracy (93.79%) and training accuracy (97.06%). When the efficiency of the suggested model was validated using the testing dataset, it too had a good accuracy of 95%.
Collapse
|
16
|
Kralikova I, Babusiak B, Smondrk M. EEG-Based Person Identification during Escalating Cognitive Load. SENSORS (BASEL, SWITZERLAND) 2022; 22:7154. [PMID: 36236268 PMCID: PMC9572021 DOI: 10.3390/s22197154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
With the development of human society, there is an increasing importance for reliable person identification and authentication to protect a person's material and intellectual property. Person identification based on brain signals has captured substantial attention in recent years. These signals are characterized by original patterns for a specific person and are capable of providing security and privacy of an individual in biometric identification. This study presents a biometric identification method based on a novel paradigm with accrual cognitive brain load from relaxing with eyes closed to the end of a serious game, which includes three levels with increasing difficulty. The used database contains EEG data from 21 different subjects. Specific patterns of EEG signals are recognized in the time domain and classified using a 1D Convolutional Neural Network proposed in the MATLAB environment. The ability of person identification based on individual tasks corresponding to a given degree of load and their fusion are examined by 5-fold cross-validation. Final accuracies of more than 99% and 98% were achieved for individual tasks and task fusion, respectively. The reduction of EEG channels is also investigated. The results imply that this approach is suitable to real applications.
Collapse
|
17
|
Wu T, Kong X, Zhong Y, Chen L. Automatic detection of abnormal EEG signals using multiscale features with ensemble learning. Front Hum Neurosci 2022; 16:943258. [PMID: 36204720 PMCID: PMC9532055 DOI: 10.3389/fnhum.2022.943258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Electroencephalogram (EEG) is an economical and convenient auxiliary test to aid in the diagnosis and analysis of brain-related neurological diseases. In recent years, machine learning has shown great potential in clinical EEG abnormality detection. However, existing methods usually fail to consider the issue of feature redundancy when extracting the relevant EEG features. In addition, the importance of utilizing the patient age information in EEG detection is ignored. In this paper, a new framework is proposed for distinguishing an unknown EEG recording as either normal or abnormal by identifying different types of EEG-derived significant features. In the proposed framework, different hierarchical salient features are extracted using a time-wise multi-scale aggregation strategy, based on a selected group of statistical characteristics calculated from the optimum discrete wavelet transform coefficients. We also fuse the age information with multi-scale features for further improving discrimination. The integrated features are classified using three ensemble learning classifiers, CatBoost, LightGBM, and random forest. Experimental results show that our method with CatBoost classifier can yield superior performance vis-a-vis competing techniques, which indicates the great promise of our methodology in EEG pathology detection.
Collapse
Affiliation(s)
- Tao Wu
- School of Mathematics and Statistics, Fujian Normal University, Fuzhou, China
| | - Xiangzeng Kong
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, School of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunning Zhong
- School of Mathematics and Statistics, Fujian Normal University, Fuzhou, China
| | - Lifei Chen
- School of Mathematics and Statistics, Fujian Normal University, Fuzhou, China
- *Correspondence: Lifei Chen,
| |
Collapse
|
18
|
Clinical Characteristics and Gene Mutation Analysis of Poststroke Epilepsy. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4801037. [PMID: 36105439 PMCID: PMC9444425 DOI: 10.1155/2022/4801037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Epilepsy is one of the most common brain disorders worldwide. Poststroke epilepsy (PSE) affects functional retrieval after stroke and brings considerable social values. A stroke occurs when the blood circulation to the brain fails, causing speech difficulties, memory loss, and paralysis. An electroencephalogram (EEG) is a tool that may detect anomalies in brain electrical activity, including those induced by a stroke. Using EEG data to determine the electrical action in the brains of stroke patients is an effort to measure therapy. Hence in this paper, deep learning assisted gene mutation analysis (DL-GMA) was utilized for classifying poststroke epilepsy in patients. This study suggested a model categorizing poststroke patients based on EEG signals that utilized wavelet, long short-term memory (LSTM), and convolutional neural networks (CNN). Gene mutation analysis can help determine the cause of an individual's epilepsy, leading to an accurate diagnosis and the best probable medical management. The test outcomes show the viability of noninvasive approaches that quickly evaluate brain waves to monitor and detect daily stroke diseases. The simulation outcomes demonstrate that the proposed GL-GMA achieves a high accuracy ratio of 98.3%, a prediction ratio of 97.8%, a precision ratio of 96.5%, and a recall ratio of 95.6% and decreases the error rate 10.3% compared to other existing methods.
Collapse
|
19
|
Machine Learning Strategies for Low-Cost Insole-Based Prediction of Center of Gravity during Gait in Healthy Males. SENSORS 2022; 22:s22093499. [PMID: 35591188 PMCID: PMC9100257 DOI: 10.3390/s22093499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
Whole-body center of gravity (CG) movements in relation to the center of pressure (COP) offer insights into the balance control strategies of the human body. Existing CG measurement methods using expensive measurement equipment fixed in a laboratory environment are not intended for continuous monitoring. The development of wireless sensing technology makes it possible to expand the measurement in daily life. The insole system is a wearable device that can evaluate human balance ability by measuring pressure distribution on the ground. In this study, a novel protocol (data preparation and model training) for estimating the 3-axis CG trajectory from vertical plantar pressures was proposed and its performance was evaluated. Input and target data were obtained through gait experiments conducted on 15 adult and 15 elderly males using a self-made insole prototype and optical motion capture system. One gait cycle was divided into four semantic phases. Features specified for each phase were extracted and the CG trajectory was predicted using a bi-directional long short-term memory (Bi-LSTM) network. The performance of the proposed CG prediction model was evaluated by a comparative study with four prediction models having no gait phase segmentation. The CG trajectory calculated with the optoelectronic system was used as a golden standard. The relative root mean square error of the proposed model on the 3-axis of anterior/posterior, medial/lateral, and proximal/distal showed the best prediction performance, with 2.12%, 12.97%, and 12.47%. Biomechanical analysis of two healthy male groups was conducted. A statistically significant difference between CG trajectories of the two groups was shown in the proposed model. Large CG sway of the medial/lateral axis trajectory and CG fall of the proximal/distal axis trajectory is shown in the old group. The protocol proposed in this study is a basic step to have gait analysis in daily life. It is expected to be utilized as a key element for clinical applications.
Collapse
|