1
|
Tibaduiza D, Anaya M, Gómez J, Sarmiento J, Perez M, Lara C, Ruiz J, Osorio N, Rodriguez K, Hernandez I, Sanchez C. Electronic Tongues and Noses: A General Overview. BIOSENSORS 2024; 14:190. [PMID: 38667183 PMCID: PMC11048215 DOI: 10.3390/bios14040190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
As technology advances, electronic tongues and noses are becoming increasingly important in various industries. These devices can accurately detect and identify different substances and gases based on their chemical composition. This can be incredibly useful in fields such as environmental monitoring and industrial food applications, where the quality and safety of products or ecosystems should be ensured through a precise analysis. Traditionally, this task is performed by an expert panel or by using laboratory tests but sometimes becomes a bottleneck because of time and other human factors that can be solved with technologies such as the provided by electronic tongue and nose devices. Additionally, these devices can be used in medical diagnosis, quality monitoring, and even in the automotive industry to detect gas leaks. The possibilities are endless, and as these technologies continue to improve, they will undoubtedly play an increasingly important role in improving our lives and ensuring our safety. Because of the multiple applications and developments in this field in the last years, this work will present an overview of the electronic tongues and noses from the point of view of the approaches developed and the methodologies used in the data analysis and steps to this aim. In the same manner, this work shows some of the applications that can be found in the use of these devices and ends with some conclusions about the current state of these technologies.
Collapse
Affiliation(s)
- Diego Tibaduiza
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| | - Maribel Anaya
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| | - Johan Gómez
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| | - Juan Sarmiento
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| | - Maria Perez
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| | - Cristhian Lara
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| | - Johan Ruiz
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| | - Nicolas Osorio
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| | - Katerin Rodriguez
- Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Isaac Hernandez
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| | - Carlos Sanchez
- Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (M.A.); (J.G.); (J.S.); (M.P.); (C.L.); (J.R.); (N.O.); (I.H.); (C.S.)
| |
Collapse
|
2
|
Yang T, Zheng X, Xiao H, Shan C, Zhang J. Moisture content online detection system based on multi-sensor fusion and convolutional neural network. FRONTIERS IN PLANT SCIENCE 2024; 15:1289783. [PMID: 38501134 PMCID: PMC10944943 DOI: 10.3389/fpls.2024.1289783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
To monitor the moisture content of agricultural products in the drying process in real time, this study applied a model combining multi-sensor fusion and convolutional neural network (CNN) to moisture content online detection. This study built a multi-sensor data acquisition platform and established a CNN prediction model with the raw monitoring data of load sensor, air velocity sensor, temperature sensor, and the tray position as input and the weight of the material as output. The model's predictive performance was compared with that of the linear partial least squares regression (PLSR) and nonlinear support vector machine (SVM) models. A moisture content online detection system was established based on this model. Results of the model performance comparison showed that the CNN prediction model had the optimal prediction effect, with the determination coefficient (R2) and root mean square error (RMSE) of 0.9989 and 6.9, respectively, which were significantly better than those of the other two models. Results of validation experiments showed that the detection system met the requirements of moisture content online detection in the drying process of agricultural products. The R2 and RMSE were 0.9901 and 1.47, respectively, indicating the good performance of the model combining multi-sensor fusion and CNN in moisture content online detection for agricultural products in the drying process. The moisture content online detection system established in this study is of great significance for researching new drying processes and realizing the intelligent development of drying equipment. It also provides a reference for online detection of other indexes in the drying process of agricultural products.
Collapse
Affiliation(s)
- Taoqing Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Xia Zheng
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - Chunhui Shan
- College of Food, Shihezi University, Shihezi, China
| | - Jikai Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| |
Collapse
|