1
|
Fettahoglu A, Zhao M, Khalighi M, Vossler H, Jovin M, Davidzon G, Zeineh M, Boada F, Mormino E, Henderson VW, Moseley M, Chen KT, Zaharchuk G. Early-Frame [ 18F]Florbetaben PET/MRI for Cerebral Blood Flow Quantification in Patients with Cognitive Impairment: Comparison to an [ 15O]Water Gold Standard. J Nucl Med 2024; 65:306-312. [PMID: 38071587 PMCID: PMC10858379 DOI: 10.2967/jnumed.123.266273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/24/2023] [Indexed: 02/03/2024] Open
Abstract
Cerebral blood flow (CBF) may be estimated from early-frame PET imaging of lipophilic tracers, such as amyloid agents, enabling measurement of this important biomarker in participants with dementia and memory decline. Although previous methods could map relative CBF, quantitative measurement in absolute units (mL/100 g/min) remained challenging and has not been evaluated against the gold standard method of [15O]water PET. The purpose of this study was to develop and validate a minimally invasive quantitative CBF imaging method combining early [18F]florbetaben (eFBB) with phase-contrast MRI using simultaneous PET/MRI. Methods: Twenty participants (11 men and 9 women; 8 cognitively normal, 9 with mild cognitive impairment, and 3 with dementia; 10 β-amyloid negative and 10 β-amyloid positive; 69 ± 9 y old) underwent [15O]water PET, phase-contract MRI, and eFBB imaging in a single session on a 3-T PET/MRI scanner. Quantitative CBF images were created from the first 2 min of brain activity after [18F]florbetaben injection combined with phase-contrast MRI measurement of total brain blood flow. These maps were compared with [15O]water CBF using concordance correlation (CC) and Bland-Altman statistics for gray matter, white matter, and individual regions derived from the automated anatomic labeling (AAL) atlas. Results: The 2 methods showed similar results in gray matter ([15O]water, 55.2 ± 14.7 mL/100 g/min; eFBB, 55.9 ± 14.2 mL/100 g/min; difference, 0.7 ± 2.4 mL/100 g/min; P = 0.2) and white matter ([15O]water, 21.4 ± 5.6 mL/100 g/min; eFBB, 21.2 ± 5.3 mL/100 g/min; difference, -0.2 ± 1.0 mL/100 g/min; P = 0.4). The intrasubject CC for AAL-derived regions was high (0.91 ± 0.04). Intersubject CC in different AAL-derived regions was similarly high, ranging from 0.86 for midfrontal regions to 0.98 for temporal regions. There were no significant differences in performance between the methods in the amyloid-positive and amyloid-negative groups as well as participants with different cognitive statuses. Conclusion: We conclude that eFBB PET/MRI can provide robust CBF measurements, highlighting the capability of simultaneous PET/MRI to provide measurements of both CBF and amyloid burden in a single imaging session in participants with memory disorders.
Collapse
Affiliation(s)
- Ates Fettahoglu
- Department of Radiology, Stanford University, Stanford, California
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mehdi Khalighi
- Department of Radiology, Stanford University, Stanford, California
| | - Hillary Vossler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Maria Jovin
- Department of Radiology, Stanford University, Stanford, California
| | - Guido Davidzon
- Department of Radiology, Stanford University, Stanford, California
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California
| | - Fernando Boada
- Department of Radiology, Stanford University, Stanford, California
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Michael Moseley
- Department of Radiology, Stanford University, Stanford, California
| | - Kevin T Chen
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
2
|
Wu CH, Lu YH, Lee TH, Tu CY, Fuh JL, Wang YF, Yang BH. Feasibility evaluation of middle-phase 18F-florbetaben positron emission tomography imaging using centiloid quantification and visual assessment. Quant Imaging Med Surg 2023; 13:4806-4815. [PMID: 37581034 PMCID: PMC10423384 DOI: 10.21037/qims-23-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/18/2023] [Indexed: 08/16/2023]
Abstract
Background 18F-florbetaben (FBB) positron emission tomography (PET) scan has been widely used in research and routine clinical practice. Most studies used late-phase (scanning from 90 to 110 min after injection) FBB scans to generate beta-amyloid accumulation data. The feasibility of middle-phase scan is seldom discussed. Using the middle-phase data can shorten the patients' waiting between the injection and scan, and hospital can acquire more flexible schedule of routine scan. Methods Paired middle-phase (60-80 min) FBB scans and standard (90-110 min) FBB scans were obtained from 27 subjects (12 neurodegenerative dementia, 8 mild cognitive impairment, 3 normal control, and 4 patients not suffering from neurodegenerative dementia). Standardized uptake value ratios (SUVRs) were calculated and converted to centiloid (CL) scale to investigate the impact on image quantification. CL pipeline validation were performed to build an equation converting the middle-phase data into equivalent standard scans. Cohen's kappa of binary interpretation and brain amyloid plaque load (BAPL) score were also used to evaluate the intrareader agreement of the FBB image from the two protocols. Results The middle-phase FBB SUVR showed an excellent correlation, which provided a linear regression equation of SUVRFBB60-80 = 0.88 × SUVRFBB90-110 + 0.07, with R2=0.98. The slope of the equation indicated that there was bias between the middle and standard acquisition. This can be converted into the CL scale using CL = 174.68 × SUVR - 166.39. Cohen's kappa of binary interpretation and BAPL score were 1.0 (P<0.0001). Conclusions Our findings indicate that the middle-phase FBB protocol is feasible in clinical applications for scans that are at either end of beta-amyloid spectrum, which provides comparable semiquantitative results to standard scan. Patient's waiting time between the injection and scan can be shortened.
Collapse
Affiliation(s)
- Cheng-Han Wu
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei
| | - Yueh-Hsun Lu
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Tse-Hao Lee
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei
| | - Chun-Yuan Tu
- Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu
- Association of Medical Radiation Technologists, Taipei
| | - Jong-Ling Fuh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei
| | - Yuh-Feng Wang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei
- Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei
| |
Collapse
|
3
|
Gómez-Grande A, Seiffert AP, Villarejo-Galende A, González-Sánchez M, Llamas-Velasco S, Bueno H, Gómez EJ, Tabuenca MJ, Sánchez-González P. Static first-minute-frame (FMF) PET imaging after 18F-labeled amyloid tracer injection is correlated to [ 18F]FDG PET in patients with primary progressive aphasia. Rev Esp Med Nucl Imagen Mol 2023:S2253-8089(23)00014-9. [PMID: 36758828 DOI: 10.1016/j.remnie.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVE To study the correlation between a static PET image of the first-minute-frame (FMF) acquired with 18F-labeled amyloid-binding radiotracers and brain [18F]FDG PET in patients with primary progressive aphasia (PPA). MATERIAL AND METHODS The study cohort includes 17 patients diagnosed with PPA with the following distribution: 9 nonfluent variant PPA, 4 logopenic variant PPA, 1 semantic variant PPA, 3 unclassifiable PPA. Regional SUVRs are extracted from FMFs and their corresponding [18F]FDG PET images and Pearson's correlation coefficients are calculated. RESULTS SUVRs of both images show similar patterns of regional cerebral alterations. Intrapatient correlation analyses result in a mean coefficient of r=0.94±0.06. Regional interpatient correlation coefficients of the study cohort are greater than 0.81. Radiotracer-specific and variant-specific subcohorts show no difference in the similarity between the images. CONCLUSIONS The static FMF could be a valid alternative to dynamic early-phase amyloid PET proposed in the literature, and a neurodegeneration biomarker for the diagnosis and classification of PPA in amyloid PET studies.
Collapse
Affiliation(s)
- Adolfo Gómez-Grande
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Alexander P Seiffert
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Alberto Villarejo-Galende
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Marta González-Sánchez
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Sara Llamas-Velasco
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Héctor Bueno
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; Department of Cardiology and Instituto de Investigación Sanitaria (imas12), 28041 Hospital Universitario 12 de Octubre, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Enrique J Gómez
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Tabuenca
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Patricia Sánchez-González
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Boccalini C, Peretti DE, Ribaldi F, Scheffler M, Stampacchia S, Tomczyk S, Rodriguez C, Montandon ML, Haller S, Giannakopoulos P, Frisoni GB, Perani D, Garibotto V. Early-phase 18F-Florbetapir and 18F-Flutemetamol images as proxies of brain metabolism in a memory clinic setting. J Nucl Med 2022; 64:jnumed.122.264256. [PMID: 35863896 PMCID: PMC9902851 DOI: 10.2967/jnumed.122.264256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Alzheimer's disease (AD) neuropathologic changes are β-amyloid (Aβ) deposition, pathologic tau, and neurodegeneration. Dual-phase amyloid-PET might be able to evaluate Aβ deposition and neurodegeneration with a single tracer injection. Early-phase amyloid-PET scans provide a proxy for cerebral perfusion, which has shown good correlations with neural dysfunction measured through metabolic consumption, while the late frames depict amyloid distribution. Our study aims to assess the comparability between early-phase amyloid-PET scans and 18F-fluorodeoxyglucose (18F-FDG)-PET brain topography at the individual level, and their ability to discriminate patients. Methods: 166 subjects evaluated at the Geneva Memory Center, ranging from cognitively unimpaired to Mild Cognitive Impairment (MCI) and dementia, underwent early-phase amyloid-PET - using either 18F-florbetapir (eFBP) (n = 94) or 18F-flutemetamol (eFMM) (n = 72) - and 18F-FDG-PET. Aβ status was assessed. Standardized uptake value ratios (SUVR) were extracted to evaluate the correlation of eFBP/eFMM and their respective 18F-FDG-PET scans. The single-subject procedure was applied to investigate hypometabolism and hypoperfusion maps and their spatial overlap by Dice coefficient. Receiver operating characteristic analyses were performed to compare the discriminative power of eFBP/eFMM, and 18F-FDG-PET SUVR in AD-related metaROI between Aβ-negative healthy controls and cases in the AD continuum. Results: Positive correlations were found between eFBP/eFMM and 18F-FDG-PET SUVR independently of Aβ status and Aβ radiotracer (R>0.72, p<0.001). eFBP/eFMM single-subject analysis revealed clusters of significant hypoperfusion with good correspondence to hypometabolism topographies, independently of the underlying neurodegenerative patterns. Both eFBP/eFMM and 18F-FDG-PET SUVR significantly discriminated AD patients from controls in the AD-related metaROIs (AUCFBP = 0.888; AUCFMM=0.801), with 18F-FDG-PET performing slightly better, however not significantly (all p-value higher than 0.05), than others (AUCFDG=0.915 and 0.832 for subjects evaluated with 18F-FBP and 18F-FMM, respectively). Conclusion: The distribution of perfusion was comparable to that of metabolism at the single-subject level by parametric analysis, particularly in the presence of a high neurodegeneration burden. Our findings indicate that eFBP/eFMM imaging can replace 18F-FDG-PET imaging, as they reveal typical neurodegenerative patterns, or allow to exclude the presence of neurodegeneration. The finding shows cost-saving capacities of amyloid-PET and supports the routine use of the modality for individual classification in clinical practice.
Collapse
Affiliation(s)
- Cecilia Boccalini
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Vita-Salute San Raffaele University, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Débora Elisa Peretti
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Sara Stampacchia
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Division of Institutional Measures, Medical Direction, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sven Haller
- CIMC–Centre d’Imagerie Médicale de Cornavin, Geneva, Switzerland
- Faculty of Medicine of University of Geneva, Geneva, Switzerland
- Division of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Panteleimon Giannakopoulos
- Division of Institutional Measures, Medical Direction, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland; and
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| |
Collapse
|
5
|
Early phase amyloid PET or “two birds with one Stone”. Rev Esp Med Nucl Imagen Mol 2022; 41:213-214. [DOI: 10.1016/j.remnie.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
|
6
|
Estudios PET Amiloide precoz o “dos pájaros de un tiro”. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|