Yager T, Chikvaidze G, Wang Q, Fu Y. Graphene Hybrid Metasurfaces for Mid-Infrared Molecular Sensors.
NANOMATERIALS (BASEL, SWITZERLAND) 2023;
13:2113. [PMID:
37513124 PMCID:
PMC10385330 DOI:
10.3390/nano13142113]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
We integrated graphene with asymmetric metal metasurfaces and optimised the geometry dependent photoresponse towards optoelectronic molecular sensor devices. Through careful tuning and characterisation, combining finite-difference time-domain simulations, electron-beam lithography-based nanofabrication, and micro-Fourier transform infrared spectroscopy, we achieved precise control over the mid-infrared peak response wavelengths, transmittance, and reflectance. Our methods enabled simple, reproducible and targeted mid-infrared molecular sensing over a wide range of geometrical parameters. With ultimate minimization potential down to atomic thicknesses and a diverse range of complimentary nanomaterial combinations, we anticipate a high impact potential of these technologies for environmental monitoring, threat detection, and point of care diagnostics.
Collapse