1
|
Hong X, Du Z, Li L, Jiang K, Chen D, Shen G. Biomimetic Honeycomb-like Ti 3C 2T x MXene/Bacterial Cellulose Aerogel-Based Flexible Pressure Sensor for the Human-Computer Interface. ACS Sens 2025; 10:417-426. [PMID: 39693562 DOI: 10.1021/acssensors.4c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The pursuit of efficient and accurate human-computer interface design urgently requires high-performance sensors with pressure sensitivity, a wide detection range, and excellent cycling stability. Herein, a biomimetic honeycomb-like Ti3C2Tx MXene/bacterial cellulose (BC) aerogel with a negative Poisson's ratio (ν = -0.14) synthesized from the bidirectional freeze-drying method is used as the active material for a flexible pressure sensor, which exhibits high sensitivity (20.14 kPa-1), fast response time (100 ms), excellent mechanical durability (5000 cycles), and a low detection limit (responding to a grain of rice weighing about 0.022 g). Moreover, when assembled into the sandwich-structured bending sensor with the aerogel layer at just 0.8 mm in thickness, the aerogel-based device has a wide angular detection range (2.7-156.3°), high sensitivity (0.47 deg-1), and good robustness, proving outstanding electromechanical performance. Significantly, a smart glove consisting of five bending sensors fixed to the proximal knuckles and a flexible circuit board as the signal processing unit was designed for the identification of the shape, demonstrating its promising applications in the field of human-computer interaction.
Collapse
Affiliation(s)
- Xinyu Hong
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhijian Du
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - La Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Kai Jiang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, Beijing 100853, P. R. China
| | - Di Chen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Zhao M, Zhang Q, Li D, Tao C, Liu X. Highly sensitive self-focused ultrasound transducer with a bionic back-reflector for multiscale-resolution photoacoustic microscopy. OPTICS EXPRESS 2024; 32:1501-1511. [PMID: 38297700 DOI: 10.1364/oe.513574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
In this study, we designed a self-focused ultrasonic transducer made of polyvinylidene fluoride (PVDF). This transducer involves a back-reflector, which is modeled after tapetum lucidum in the eyes of some nocturnal animals. The bionic structure reflects the ultrasound, which passes through the PVDF membrane, back to PVDF and provides a second chance for the PVDF to convert the ultrasound to electric signals. This design increases the amount of ultrasound absorbed by the PVDF, thereby improving the detection sensitivity. Both ultrasonic and photoacoustic (PA) experiments were conduct to characterize the performance of the transducer. The results show that the fabricated transducer has a center frequency of 13.07 MHz, and a bandwidth of 96% at -6 dB. With an acoustic numerical aperture (NA) of 0.64, the transducer provides a lateral resolution of 140µm. Importantly, the bionic design improves the detection sensitivity of the transducer about 30%. Finally, we apply the fabricated transducer to optical-resolution (OR) and acoustic-resolution photoacoustic microscopy (AR-PAM) to achieve multiscale-resolution PA imaging. Imaging of the bamboo leaf and the leaf skeleton demonstrates that the proposed transducer can provide high spatial resolution, better imaging intensity and contrast. Therefore, the proposed transducer design will be useful to enhance the performance of multiscale-resolution PAM.
Collapse
|
3
|
Cheraghi Bidsorkhi H, Faramarzi N, Ali B, Ballam LR, D'Aloia AG, Tamburrano A, Sarto MS. Wearable Graphene-based smart face mask for Real-Time human respiration monitoring. MATERIALS & DESIGN 2023; 230:111970. [PMID: 37162811 PMCID: PMC10151252 DOI: 10.1016/j.matdes.2023.111970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
After the pandemic of SARS-CoV-2, the use of face-masks is considered the most effective way to prevent the spread of virus-containing respiratory fluid. As the virus targets the lungs directly, causing shortness of breath, continuous respiratory monitoring is crucial for evaluating health status. Therefore, the need for a smart face mask (SFM) capable of wirelessly monitoring human respiration in real-time has gained enormous attention. However, some challenges in developing these devices should be solved to make practical use of them possible. One key issue is to design a wearable SFM that is biocompatible and has fast responsivity for non-invasive and real-time tracking of respiration signals. Herein, we present a cost-effective and straightforward solution to produce innovative SFMs by depositing graphene-based coatings over commercial surgical masks. In particular, graphene nanoplatelets (GNPs) are integrated into a polycaprolactone (PCL) polymeric matrix. The resulting SFMs are characterized morphologically, and their electrical, electromechanical, and sensing properties are fully assessed. The proposed SFM exhibits remarkable durability (greater than1000 cycles) and excellent fast response time (∼42 ms), providing simultaneously normal and abnormal breath signals with clear differentiation. Finally, a developed mobile application monitors the mask wearer's breathing pattern wirelessly and provides alerts without compromising user-friendliness and comfort.
Collapse
Affiliation(s)
- Hossein Cheraghi Bidsorkhi
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Negin Faramarzi
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Babar Ali
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lavanya Rani Ballam
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Giuseppe D'Aloia
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Tamburrano
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Sabrina Sarto
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Liu D, Wei S, Wang D. Improving the Sensing Properties of Graphene MEMS Pressure Sensor by Low-Temperature Annealing in Atmosphere. SENSORS (BASEL, SWITZERLAND) 2022; 22:8082. [PMID: 36298432 PMCID: PMC9606897 DOI: 10.3390/s22208082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The high demand for pressure devices with miniaturization and a wide bearing range has encouraged researchers to explore new high-performance sensors from different approaches. In this study, a sensitive element based on graphene in-plane compression properties for realizing pressure sensing is experimentally prepared using microelectromechanical systems (MEMS) fabrication technology; it consists of a 50 µm thick, 1400 µm wide square multilayer component membrane and a graphene monolayer with a meander pattern. The prepared sample is extensively characterized and analyzed by using various techniques, including atomic force microscopy, Raman spectroscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, COMSOL finite element method, and density functional theory. The sensing performance of the new pressure sensor based on the sensitive element are obtained by theoretical analysis for electromechanical measurements of the sensitive element before and after low-temperature annealing in atmosphere. Results demonstrate that atmospheric annealing at 300 °C enhances the pressure sensing sensitivity by 4 times compared to pristine graphene without annealing, which benefits from the desorption of hydroxyl groups on the graphene surface during annealing. The sensitivity is comparable and even better than that of previous sensors based on graphene in-plane properties. Our results provide new insights into realizing high-performance MEMS devices based on 2D sensitive materials.
Collapse
Affiliation(s)
- Daosen Liu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
- Communication and Electronic Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Shengsheng Wei
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dejun Wang
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Detachable Soft Actuators with Tunable Stiffness Based on Wire Jamming. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The integration of variable stiffness materials and structures into soft robots is a popular trend, allowing soft robots to switch between soft and rigid states in different situations. This concept combines the advantages of rigid mechanisms and soft robots, resulting in not only excellent flexibility but also tunable stiffness for high load capacity and fast and precise operation. Here, a stiffness-tunable soft actuator based on wire/fiber jamming structure is proposed, where the fiber-reinforced soft actuator is responsible for the bending motion, and the jamming structure acts as a stiffness-tunable layer controlled by vacuum pressure. The primary design objective of this study is to fabricate a jamming structure with wide-range stiffness, universal adaptability and high dexterity. Thus, the behaviors of wire/fiber jamming structures with different layouts, materials and wire arrangements are analyzed, and a theoretical model is developed to predict the effect of geometric parameters. Experimental characterizations show that the stiffness can be significantly enhanced in the bending direction, while the stiffness is smaller in the torsion direction. Additionally, by integrating Velcro strips into the design, a quick and detachable scheme for the stiffness-tunable soft actuator is achieved. Application examples exhibit high load capacity and good shape adaptability.
Collapse
|
6
|
Song K, Son H, Park S, Lee J, Jang J, Lee M, Choi HJ. Fabrication of Piezo-Resistance Composites Containing Thermoplastic Polyurethane/Hybrid Filler Using 3D Printing. SENSORS 2021; 21:s21206813. [PMID: 34696026 PMCID: PMC8536988 DOI: 10.3390/s21206813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
In this study, 3D-printable flexible piezoresistive composites containing various amounts of cilia-like hybrid fillers were developed. In the hybrid fillers, micro-scale Cu particles with a 0D structure may allow them to easily disperse into the flexible TPU matrix. Furthermore, nanoscale multi-walled carbon nanotubes (MWCNTs) with a high aspect ratio, present on the surface of the Cu particles, form an electrical network when the polymer matrix is strained, thus providing good piezoresistive performance as well as good flowability of the composite materials. With an optimal hybrid filler content (17.5 vol.%), the 3D-printed piezoresistive composite exhibits a gauge factor of 6.04, strain range of over 20%, and durability of over 100 cycles. These results highlight the potential applications of piezoresistive pressure sensors for health monitoring, touch sensors, and electronic skin.
Collapse
|