1
|
Capuano R, Ciotti M, Catini A, Bernardini S, Di Natale C. Clinical applications of volatilomic assays. Crit Rev Clin Lab Sci 2025; 62:45-64. [PMID: 39129534 DOI: 10.1080/10408363.2024.2387038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The study of metabolomics is revealing immense potential for diagnosis, therapy monitoring, and understanding of pathogenesis processes. Volatilomics is a subcategory of metabolomics interested in the detection of molecules that are small enough to be released in the gas phase. Volatile compounds produced by cellular processes are released into the blood and lymph, and can reach the external environment through different pathways, such as the blood-air interface in the lung that are detected in breath, or the blood-water interface in the kidney that leads to volatile compounds detected in urine. Besides breath and urine, additional sources of volatile compounds such as saliva, blood, feces, and skin are available. Volatilomics traces its roots back over fifty years to the pioneering investigations in the 1970s. Despite extensive research, the field remains in its infancy, hindered by a lack of standardization despite ample experimental evidence. The proliferation of analytical instrumentations, sample preparations and methods of volatilome sampling still make it difficult to compare results from different studies and to establish a common standard approach to volatilomics. This review aims to provide an overview of volatilomics' diagnostic potential, focusing on two key technical aspects: sampling and analysis. Sampling poses a challenge due to the susceptibility of human samples to contamination and confounding factors from various sources like the environment and lifestyle. The discussion then delves into targeted and untargeted approaches in volatilomics. Some case studies are presented to exemplify the results obtained so far. Finally, the review concludes with a discussion on the necessary steps to fully integrate volatilomics into clinical practice.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Díaz de León-Martínez L, Flores-Rangel G, Alcántara-Quintana LE, Mizaikoff B. A Review on Long COVID Screening: Challenges and Perspectives Focusing on Exhaled Breath Gas Sensing. ACS Sens 2024. [PMID: 39680873 DOI: 10.1021/acssensors.4c02280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Long COVID (LC) is a great global health concern, affecting individuals recovering from SARS-CoV-2 infection. The persistent and varied symptoms across multiple organs complicate diagnosis and management, and an incomplete understanding of the condition hinders advancements in therapeutics. Current diagnostic methods face challenges related to standardization and completeness. To overcome this, new technologies such as sensor-based electronic noses are being explored for LC assessment, offering a noninvasive screening approach via volatile organic compounds (VOC) sensing in exhaled breath. Although specific LC-associated VOCs have not been fully characterized, insights from COVID-19 research suggest their potential as biomarkers. Additionally, AI-driven chemometrics are promising in identifying and predicting outcomes; despite challenges, AI-driven technologies hold the potential to enhance LC evaluation, providing rapid and accurate diagnostics for improved patient care and outcomes. This review underscores the importance of emerging and sensing technologies and comprehensive diagnostic strategies to address screening and treatment challenges in the face of LC.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Breathlabs Inc., Spring, Texas 77386, United States
| | - Gabriela Flores-Rangel
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Luz E Alcántara-Quintana
- Unidad de Innovación en Diagnóstico Celular y Molecular, Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a sección, 78120, San Luis Potosí, México
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Hahn-Schikard, Sedanstrasse 14, 89077 Ulm, Germany
| |
Collapse
|
3
|
Ramírez W, Pillajo V, Ramírez E, Manzano I, Meza D. Exploring Components, Sensors, and Techniques for Cancer Detection via eNose Technology: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:7868. [PMID: 39686404 DOI: 10.3390/s24237868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
This paper offers a systematic review of advancements in electronic nose technologies for early cancer detection with a particular focus on the detection and analysis of volatile organic compounds present in biomarkers such as breath, urine, saliva, and blood. Our objective is to comprehensively explore how these biomarkers can serve as early indicators of various cancers, enhancing diagnostic precision and reducing invasiveness. A total of 120 studies published between 2018 and 2023 were examined through systematic mapping and literature review methodologies, employing the PICOS (Population, Intervention, Comparison, Outcome, and Study design) methodology to guide the analysis. Of these studies, 65.83% were ranked in Q1 journals, illustrating the scientific rigor of the included research. Our review synthesizes both technical and clinical perspectives, evaluating sensor-based devices such as gas chromatography-mass spectrometry and selected ion flow tube-mass spectrometry with reported incidences of 30 and 8 studies, respectively. Key analytical techniques including Support Vector Machine, Principal Component Analysis, and Artificial Neural Networks were identified as the most prevalent, appearing in 22, 24, and 13 studies, respectively. While substantial improvements in detection accuracy and sensitivity are noted, significant challenges persist in sensor optimization, data integration, and adaptation into clinical settings. This comprehensive analysis bridges existing research gaps and lays a foundation for the development of non-invasive diagnostic devices. By refining detection technologies and advancing clinical applications, this work has the potential to transform cancer diagnostics, offering higher precision and reduced reliance on invasive procedures. Our aim is to provide a robust knowledge base for researchers at all experience levels, presenting insights on sensor capabilities, metrics, analytical methodologies, and the transformative impact of emerging electronic nose technologies in clinical practice.
Collapse
Affiliation(s)
- Washington Ramírez
- Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171104, Ecuador
| | - Verónica Pillajo
- Departamento de Informática, Universidad Politécnica Salesiana, Quito 170146, Ecuador
| | - Eileen Ramírez
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador
| | - Ibeth Manzano
- Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171104, Ecuador
| | - Doris Meza
- Facultad de Ciencias Económicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| |
Collapse
|
4
|
Gashimova E, Temerdashev A, Perunov D, Porkhanov V, Polyakov I, Podzhivotov A, Dmitrieva E. Quantification of cancer biomarkers in urine using volatilomic approach. Heliyon 2024; 10:e39028. [PMID: 39435108 PMCID: PMC11491902 DOI: 10.1016/j.heliyon.2024.e39028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Urine analysis is an attractive approach for non-invasive cancer diagnostics. In this study, a procedure for the determination of volatile organic compounds (VOCs) in human urine (acetone, acetonitrile, dimethylsulfide, dimethyl disulfide, dimethyl trisulfide, hexane, benzene, toluene, 2-butanone, 2-pentanone, pentanal) has been described including sample preparation using preconcentration of analytes in sorbent tubes followed by gas chromatography with mass spectrometry (GC-MS). Fractional factorial design and constrained surfaces design were used to optimize preconcentration of VOCs in sorbent tubes. The procedure was validated by analysis of synthetic urine containing VOC standards in the concentration range of 1-5000 ng/mL. Optimized procedure was applied to analyze urine samples of 89 healthy volunteers and 85 patients with cancer of various localizations: 42 patients with lung cancer, 25 - colon, 3 - stomach, 2 - prostate, 2 - esophageal, 2 - pancreas, 2 - kidney, 1 - ovarian, 1 - cervical, 1 - skin, 1 - liver. Concentrations of 2-butanone, 2-pentanone, acetonitrile, and benzene were found different in urine of patients with cancer and healthy individuals. Influence of cancer localization and tumor, nodule, metastasis stage on urine VOC profile was considered. The approach of using ratios of VOCs to the main ones instead of concentrations was considered. A diagnostic model based on significantly different VOC ratios was created to classify healthy individuals and patients with cancer using artificial neural network (ANN). The model was validated during construction by means of 3-fold cross-validation. Average area under receiver operating characteristic (ROC) curve on test dataset was 0.886. Average sensitivity and specificity of the created model were 91 % and 82 %.
Collapse
Affiliation(s)
- Elina Gashimova
- Kuban State University, Stavropol'skaya St. 149, Krasnodar, 350040, Russia
| | - Azamat Temerdashev
- Kuban State University, Stavropol'skaya St. 149, Krasnodar, 350040, Russia
| | - Dmitry Perunov
- Research Institute – Regional Clinical Hospital, No 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar, 350086, Russia
| | - Vladimir Porkhanov
- Research Institute – Regional Clinical Hospital, No 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar, 350086, Russia
| | - Igor Polyakov
- Research Institute – Regional Clinical Hospital, No 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar, 350086, Russia
| | - Alexey Podzhivotov
- Kuban State University, Stavropol'skaya St. 149, Krasnodar, 350040, Russia
| | - Ekaterina Dmitrieva
- Shenzhen MSU-BIT University, International University, Park Road, 1, Shenzhen, Longgang District, Guangdong Province, 518172, PR China
| |
Collapse
|
5
|
Ma TT, Chang Z, Zhang N, Xu H. Application of electronic nose technology in the diagnosis of gastrointestinal diseases: a review. J Cancer Res Clin Oncol 2024; 150:401. [PMID: 39192027 PMCID: PMC11349790 DOI: 10.1007/s00432-024-05925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Electronic noses (eNoses) are electronic bionic olfactory systems that use sensor arrays to produce response patterns to different odors, thereby enabling the identification of various scents. Gastrointestinal diseases have a high incidence rate and occur in 9 out of 10 people in China. Gastrointestinal diseases are characterized by a long course of symptoms and are associated with treatment difficulties and recurrence. This review offers a comprehensive overview of volatile organic compounds, with a specific emphasis on those detected via the eNose system. Furthermore, this review describes the application of bionic eNose technology in the diagnosis and screening of gastrointestinal diseases based on recent local and international research progress and advancements. Moreover, the prospects of bionic eNose technology in the field of gastrointestinal disease diagnostics are discussed.
Collapse
Affiliation(s)
- Tan-Tan Ma
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
6
|
Mei H, Peng J, Wang T, Zhou T, Zhao H, Zhang T, Yang Z. Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array. NANO-MICRO LETTERS 2024; 16:269. [PMID: 39141168 PMCID: PMC11324646 DOI: 10.1007/s40820-024-01489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
As information acquisition terminals for artificial olfaction, chemiresistive gas sensors are often troubled by their cross-sensitivity, and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area. Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors. It is crucial to choose an appropriate pattern recognition method for enhancing data analysis, reducing errors and improving system reliability, obtaining better classification or gas concentration prediction results. In this review, we analyze the sensing mechanism of cross-sensitivity for chemiresistive gas sensors. We further examine the types, working principles, characteristics, and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays. Additionally, we report, summarize, and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification. At the same time, this work showcases the recent advancements in utilizing these methods for gas identification, particularly within three crucial domains: ensuring food safety, monitoring the environment, and aiding in medical diagnosis. In conclusion, this study anticipates future research prospects by considering the existing landscape and challenges. It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
Collapse
Affiliation(s)
- Haixia Mei
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun, 130022, People's Republic of China
| | - Jingyi Peng
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun, 130022, People's Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
7
|
Liu Y, Ji Y, Chen J, Zhang Y, Li X, Li X. Pioneering noninvasive colorectal cancer detection with an AI-enhanced breath volatilomics platform. Theranostics 2024; 14:4240-4255. [PMID: 39113791 PMCID: PMC11303087 DOI: 10.7150/thno.94950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 08/10/2024] Open
Abstract
Background: The sensitivity and specificity of current breath biomarkers are often inadequate for effective cancer screening, particularly in colorectal cancer (CRC). While a few exhaled biomarkers in CRC exhibit high specificity, they lack the requisite sensitivity for early-stage detection, thereby limiting improvements in patient survival rates. Methods: In this study, we developed an advanced Mass Spectrometry-based volatilomics platform, complemented by an enhanced breath sampler. The platform integrates artificial intelligence (AI)-assisted algorithms to detect multiple volatile organic compounds (VOCs) biomarkers in human breath. Subsequently, we applied this platform to analyze 364 clinical CRC and normal exhaled samples. Results: The diagnostic signatures, including 2-methyl, octane, and butyric acid, generated by the platform effectively discriminated CRC patients from normal controls with high sensitivity (89.7%), specificity (86.8%), and accuracy (AUC = 0.91). Furthermore, the metastatic signature correctly identified over 50% of metastatic patients who tested negative for carcinoembryonic antigen (CEA). Fecal validation indicated that elevated breath biomarkers correlated with an inflammatory response guided by Bacteroides fragilis in CRC. Conclusion: This study introduces a sophisticated AI-aided Mass Spectrometry-based platform capable of identifying novel and feasible breath biomarkers for early-stage CRC detection. The promising results position the platform as an efficient noninvasive screening test for clinical applications, offering potential advancements in early detection and improved survival rates for CRC patients.
Collapse
Affiliation(s)
- Yongqian Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P.R. China
| | - Yongyan Ji
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P.R. China
| | - Jian Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P.R. China
| | - Yixuan Zhang
- Department of gastroenterology, Huadong hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiaowen Li
- Department of gastroenterology, Huadong hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
8
|
Wang Q, Fang Y, Tan S, Li Z, Zheng R, Ren Y, Jiang Y, Huang X. Diagnostic performance of volatile organic compounds analysis and electronic noses for detecting colorectal cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1397259. [PMID: 38817891 PMCID: PMC11138104 DOI: 10.3389/fonc.2024.1397259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction The detection of Volatile Organic Compounds (VOCs) could provide a potential diagnostic modality for the early detection and surveillance of colorectal cancers. However, the overall diagnostic accuracy of the proposed tests remains uncertain. Objective This systematic review is to ascertain the diagnostic accuracy of using VOC analysis techniques and electronic noses (e-noses) as noninvasive diagnostic methods for colorectal cancer within the realm of clinical practice. Methods A systematic search was undertaken on PubMed, EMBASE, Web of Science, and the Cochrane Library to scrutinize pertinent studies published from their inception to September 1, 2023. Only studies conducted on human subjects were included. Meta-analysis was performed using a bivariate model to obtain summary estimates of sensitivity, specificity, and positive and negative likelihood ratios. The Quality Assessment of Diagnostic Accuracy Studies 2 tool was deployed for quality assessment. The protocol for this systematic review was registered in PROSPERO, and PRISMA guidelines were used for the identification, screening, eligibility, and selection process. Results This review encompassed 32 studies, 22 studies for VOC analysis and 9 studies for e-nose, one for both, with a total of 4688 subjects in the analysis. The pooled sensitivity and specificity of VOC analysis for CRC detection were 0.88 (95% CI, 0.83-0.92) and 0.85 (95% CI, 0.78-0.90), respectively. In the case of e-nose, the pooled sensitivity was 0.87 (95% CI, 0.83-0.90), and the pooled specificity was 0.78 (95% CI, 0.62-0.88). The area under the receiver operating characteristic analysis (ROC) curve for VOC analysis and e-noses were 0.93 (95% CI, 0.90-0.95) and 0.90 (95% CI, 0.87-0.92), respectively. Conclusion The outcomes of this review substantiate the commendable accuracy of VOC analysis and e-nose technology in detecting CRC. VOC analysis has a higher specificity than e-nose for the diagnosis of CRC and a sensitivity comparable to that of e-nose. However, numerous limitations, including a modest sample size, absence of standardized collection methods, lack of external validation, and a notable risk of bias, were identified. Consequently, there exists an imperative need for expansive, multi-center clinical studies to elucidate the applicability and reproducibility of VOC analysis or e-nose in the noninvasive diagnosis of colorectal cancer. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails, identifier CRD42023398465.
Collapse
Affiliation(s)
- Qiaoling Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Fang
- Second Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shiyan Tan
- Second Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuohong Li
- Second Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruyi Zheng
- Second Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yifeng Ren
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaopeng Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Taverna G, Grizzi F, Bax C, Tidu L, Zanoni M, Vota P, Mazzieri C, Clementi MC, Toia G, Hegazi MAAA, Lotesoriere BJ, Hurle R, Capelli L. Prostate cancer risk stratification via eNose urine odor analysis: a preliminary report. Front Oncol 2024; 14:1339796. [PMID: 38505583 PMCID: PMC10948417 DOI: 10.3389/fonc.2024.1339796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Prostate cancer (PCa) is known for its highly diverse clinical behavior, ranging from low-risk, slow-growing tumors to aggressive and life-threatening forms. To avoid over-treatment of low-risk PCa patients, it would be very important prior to any therapeutic intervention to appropriately classify subjects based on tumor aggressiveness. Unfortunately, there is currently no reliable test available for this purpose. The aim of the present study was to evaluate the ability of risk stratification of PCa subjects using an electronic nose (eNose) detecting PCa-specific volatile organic compounds (VOCs) in urine samples. Methods The study involved 120 participants who underwent diagnostic prostate biopsy followed by robot assisted radical prostatectomy (RARP). PCa risk was categorized as low, intermediate, or high based on the D'Amico risk classification and the pathological grade (PG) assessed after RARP. The eNose's ability to categorize subjects for PCa risk stratification was evaluated based on accuracy and recall metrics. Results The study population comprised 120 participants. When comparing eNose predictions with PG an accuracy of 79.2% (95%CI 70.8 - 86%) was found, while an accuracy of 74.2% (95%CI 65.4 - 81.7%) was found when compared to D'Amico risk classification system. Additionally, if compared low- versus -intermediate-/high-risk PCa, the eNose achieved an accuracy of 87.5% (95%CI 80.2-92.8%) based on PG or 90.8% (95%CI 84.2-95.3%) based on D'Amico risk classification. However, when using low-/-intermediate versus -high-risk PCa for PG, the accuracy was found to be 91.7% (95%CI 85.2-95.9%). Finally, an accuracy of 80.8% (95%CI72.6-87.4%) was found when compared with D'Amico risk classification. Discussion The findings of this study indicate that eNose may represent a valid alternative not only for early and non-invasive diagnosis of PCa, but also to categorize patients based on tumor aggressiveness. Further studies including a wider sample population will be necessary to confirm the potential clinical impact of this new technology.
Collapse
Affiliation(s)
| | - Fabio Grizzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Carmen Bax
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Lorenzo Tidu
- “Vittorio Veneto” Division, Italian Ministry of Defenses, Firenze, Italy
| | - Matteo Zanoni
- Department of Urology, Humanitas Mater Domini, Varese, Italy
| | - Paolo Vota
- Department of Urology, Humanitas Mater Domini, Varese, Italy
| | - Cinzia Mazzieri
- Department of Urology, Humanitas Mater Domini, Varese, Italy
| | | | - Giovanni Toia
- Department of Urology, Humanitas Mater Domini, Varese, Italy
| | | | - Beatrice Julia Lotesoriere
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Rodolfo Hurle
- Department of Urology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laura Capelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
10
|
Zhou M, Wang Q, Lu X, Zhang P, Yang R, Chen Y, Xia J, Chen D. Exhaled breath and urinary volatile organic compounds (VOCs) for cancer diagnoses, and microbial-related VOC metabolic pathway analysis: a systematic review and meta-analysis. Int J Surg 2024; 110:1755-1769. [PMID: 38484261 PMCID: PMC10942174 DOI: 10.1097/js9.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 03/17/2024]
Abstract
BACKGROUND The gradual evolution of the detection and quantification of volatile organic compounds (VOCs) has been instrumental in cancer diagnosis. The primary objective of this study was to assess the diagnostic potential of exhaled breath and urinary VOCs in cancer detection. As VOCs are indicative of tumor and human metabolism, our work also sought to investigate the metabolic pathways linked to the development of cancerous tumors. MATERIALS AND METHODS An electronic search was performed in the PubMed database. Original studies on VOCs within exhaled breath and urine for cancer detection with a control group were included. A meta-analysis was conducted using a bivariate model to assess the sensitivity and specificity of the VOCs for cancer detection. Fagan's nomogram was designed to leverage the findings from our diagnostic analysis for the purpose of estimating the likelihood of cancer in patients. Ultimately, MetOrigin was employed to conduct an analysis of the metabolic pathways associated with VOCs in relation to both human and/or microbiota. RESULTS The pooled sensitivity, specificity and the area under the curve for cancer screening utilizing exhaled breath and urinary VOCs were determined to be 0.89, 0.88, and 0.95, respectively. A pretest probability of 51% can be considered as the threshold for diagnosing cancers with VOCs. As the estimated pretest probability of cancer exceeds 51%, it becomes more appropriate to emphasize the 'ruling in' approach. Conversely, when the estimated pretest probability of cancer falls below 51%, it is more suitable to emphasize the 'ruling out' approach. A total of 14, 14, 6, and 7 microbiota-related VOCs were identified in relation to lung, colorectal, breast, and liver cancers, respectively. The enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in the aforementioned tumor types. CONCLUSIONS The analysis of exhaled breath and urinary VOCs showed promise for cancer screening. In addition, the enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in four tumor types, namely lung, colorectum, breast and liver. These findings hold significant implications for the prospective clinical application of multiomics correlation in disease management and the exploration of potential therapeutic targets.
Collapse
Affiliation(s)
- Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Qinghua Wang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Xinyi Lu
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Ping Zhang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Daozhen Chen
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| |
Collapse
|
11
|
Kononova E, Mežmale L, Poļaka I, Veliks V, Anarkulova L, Vilkoite I, Tolmanis I, Ļeščinska AM, Stonāns I, Pčolkins A, Mochalski P, Leja M. Breath Fingerprint of Colorectal Cancer Patients Based on the Gas Chromatography-Mass Spectrometry Analysis. Int J Mol Sci 2024; 25:1632. [PMID: 38338911 PMCID: PMC10855950 DOI: 10.3390/ijms25031632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The human body emits a multitude of volatile organic compounds (VOCs) via tissues and various bodily fluids or exhaled breath. These compounds collectively create a distinctive chemical profile, which can potentially be employed to identify changes in human metabolism associated with colorectal cancer (CRC) and, consequently, facilitate the diagnosis of this disease. The main goal of this study was to investigate and characterize the VOCs' chemical patterns associated with the breath of CRC patients and controls and identify potential expiratory markers of this disease. For this purpose, gas chromatography-mass spectrometry was applied. Collectively, 1656 distinct compounds were identified in the breath samples provided by 152 subjects. Twenty-two statistically significant VOCs (p-xylene; hexanal; 2-methyl-1,3-dioxolane; 2,2,4-trimethyl-1,3-pentanediol diisobutyrate; hexadecane; nonane; ethylbenzene; cyclohexanone; diethyl phthalate; 6-methyl-5-hepten-2-one; tetrahydro-2H-pyran-2-one; 2-butanone; benzaldehyde; dodecanal; benzothiazole; tetradecane; 1-dodecanol; 1-benzene; 3-methylcyclopentyl acetate; 1-nonene; toluene) were observed at higher concentrations in the exhaled breath of the CRC group. The elevated levels of these VOCs in CRC patients' breath suggest the potential for these compounds to serve as biomarkers for CRC.
Collapse
Affiliation(s)
- Elīna Kononova
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Linda Mežmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Health Centre 4, LV-1012 Riga, Latvia;
| | - Inese Poļaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Department of Modelling and Simulation, Riga Technical University, LV-1048 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
| | - Linda Anarkulova
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Health Centre 4, LV-1012 Riga, Latvia;
- Liepaja Regional Hospital, LV-3414 Liepaja, Latvia
| | - Ilona Vilkoite
- Health Centre 4, LV-1012 Riga, Latvia;
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Ivars Tolmanis
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia;
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Anna Marija Ļeščinska
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Ilmārs Stonāns
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
| | - Andrejs Pčolkins
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Pawel Mochalski
- Institute for Breath Research, University of Innsbruck, 6020 Innsbruck, Austria;
- Institute of Chemistry, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland
| | - Mārcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (E.K.); (I.P.); (V.V.); (L.A.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| |
Collapse
|
12
|
Poļaka I, Mežmale L, Anarkulova L, Kononova E, Vilkoite I, Veliks V, Ļeščinska AM, Stonāns I, Pčolkins A, Tolmanis I, Shani G, Haick H, Mitrovics J, Glöckler J, Mizaikoff B, Leja M. The Detection of Colorectal Cancer through Machine Learning-Based Breath Sensor Analysis. Diagnostics (Basel) 2023; 13:3355. [PMID: 37958251 PMCID: PMC10648537 DOI: 10.3390/diagnostics13213355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related deaths worldwide. While CRC screening is already part of organized programs in many countries, there remains a need for improved screening tools. In recent years, a potential approach for cancer diagnosis has emerged via the analysis of volatile organic compounds (VOCs) using sensor technologies. The main goal of this study was to demonstrate and evaluate the diagnostic potential of a table-top breath analyzer for detecting CRC. Breath sampling was conducted and CRC vs. non-cancer groups (105 patients with CRC, 186 non-cancer subjects) were included in analysis. The obtained data were analyzed using supervised machine learning methods (i.e., Random Forest, C4.5, Artificial Neural Network, and Naïve Bayes). Superior accuracy was achieved using Random Forest and Evolutionary Search for Features (79.3%, sensitivity 53.3%, specificity 93.0%, AUC ROC 0.734), and Artificial Neural Networks and Greedy Search for Features (78.2%, sensitivity 43.3%, specificity 96.5%, AUC ROC 0.735). Our results confirm the potential of the developed breath analyzer as a promising tool for identifying and categorizing CRC within a point-of-care clinical context. The combination of MOX sensors provided promising results in distinguishing healthy vs. diseased breath samples. Its capacity for rapid, non-invasive, and targeted CRC detection suggests encouraging prospects for future clinical screening applications.
Collapse
Affiliation(s)
- Inese Poļaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (I.P.); (L.A.); (E.K.); (V.V.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Department of Modelling and Simulation, Riga Technical University, LV-1048 Riga, Latvia
| | - Linda Mežmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (I.P.); (L.A.); (E.K.); (V.V.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
- Health Centre 4, LV-1012 Riga, Latvia;
| | - Linda Anarkulova
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (I.P.); (L.A.); (E.K.); (V.V.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
- Health Centre 4, LV-1012 Riga, Latvia;
- Liepaja Regional Hospital, LV-3414 Liepaja, Latvia
| | - Elīna Kononova
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (I.P.); (L.A.); (E.K.); (V.V.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Ilona Vilkoite
- Health Centre 4, LV-1012 Riga, Latvia;
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (I.P.); (L.A.); (E.K.); (V.V.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
| | - Anna Marija Ļeščinska
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (I.P.); (L.A.); (E.K.); (V.V.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Ilmārs Stonāns
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (I.P.); (L.A.); (E.K.); (V.V.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
| | - Andrejs Pčolkins
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (I.P.); (L.A.); (E.K.); (V.V.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Ivars Tolmanis
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia;
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Gidi Shani
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | - Hossam Haick
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | | | - Johannes Glöckler
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany; (J.G.); (B.M.)
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany; (J.G.); (B.M.)
- Hahn-Schickard, 89077 Ulm, Germany
| | - Mārcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia; (I.P.); (L.A.); (E.K.); (V.V.); (A.M.Ļ.); (I.S.); (A.P.); (M.L.)
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| |
Collapse
|
13
|
Wilson AD. Developments of Recent Applications for Early Diagnosis of Diseases Using Electronic-Nose and Other VOC-Detection Devices. SENSORS (BASEL, SWITZERLAND) 2023; 23:7885. [PMID: 37765943 PMCID: PMC10537495 DOI: 10.3390/s23187885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
This Editorial provides summaries and an overview of research and review articles published in the Sensors journal, volumes 21 (2021), 22 (2022), and 23 (2023), within the biomedical Special Issue "Portable Electronic-Nose Devices for Noninvasive Early Disease Detection", which focused on recent sensors, biosensors, and clinical instruments developed for noninvasive early detection and diagnosis of human and animal diseases. The ten articles published in this Special Issue provide new information associated with recent electronic-nose (e-nose) and related volatile organic compound (VOC)-detection technologies developed to improve the effectiveness and efficiency of diagnostic methodologies for early disease detection prior to symptom development. For review purposes, the summarized articles were placed into three broad groupings or topic areas, including veterinary-wildlife pathology, human clinical pathology, and the detection of dietary effects on VOC emissions. These specified categories were used to define sectional headings devoted to related research studies with a commonality based on a particular disease being investigated or type of analytical instrument used in analyses.
Collapse
Affiliation(s)
- Alphus Dan Wilson
- Pathology Department, Center for Forest Health & Disturbance, Forest Genetics and Ecosystems Biology, Southern Research Station, USDA Forest Service, Stoneville, MS 38776, USA
| |
Collapse
|
14
|
Dalis C, Mesfin FM, Manohar K, Liu J, Shelley WC, Brokaw JP, Markel TA. Volatile Organic Compound Assessment as a Screening Tool for Early Detection of Gastrointestinal Diseases. Microorganisms 2023; 11:1822. [PMID: 37512994 PMCID: PMC10385474 DOI: 10.3390/microorganisms11071822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrointestinal (GI) diseases have a high prevalence throughout the United States. Screening and diagnostic modalities are often expensive and invasive, and therefore, people do not utilize them effectively. Lack of proper screening and diagnostic assessment may lead to delays in diagnosis, more advanced disease at the time of diagnosis, and higher morbidity and mortality rates. Research on the intestinal microbiome has demonstrated that dysbiosis, or unfavorable alteration of organismal composition, precedes the onset of clinical symptoms for various GI diseases. GI disease diagnostic research has led to a shift towards non-invasive methods for GI screening, including chemical-detection tests that measure changes in volatile organic compounds (VOCs), which are the byproducts of bacterial metabolism that result in the distinct smell of stool. Many of these tools are expensive, immobile benchtop instruments that require highly trained individuals to interpret the results. These attributes make them difficult to implement in clinical settings. Alternatively, electronic noses (E-noses) are relatively cheaper, handheld devices that utilize multi-sensor arrays and pattern recognition technology to analyze VOCs. The purpose of this review is to (1) highlight how dysbiosis impacts intestinal diseases and how VOC metabolites can be utilized to detect alterations in the microbiome, (2) summarize the available VOC analytical platforms that can be used to detect aberrancies in intestinal health, (3) define the current technological advancements and limitations of E-nose technology, and finally, (4) review the literature surrounding several intestinal diseases in which headspace VOCs can be used to detect or predict disease.
Collapse
Affiliation(s)
- Costa Dalis
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W Christopher Shelley
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Grizzi F, Bax C, Hegazi MAAA, Lotesoriere BJ, Zanoni M, Vota P, Hurle RF, Buffi NM, Lazzeri M, Tidu L, Capelli L, Taverna G. Early Detection of Prostate Cancer: The Role of Scent. CHEMOSENSORS 2023; 11:356. [DOI: 10.3390/chemosensors11070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Prostate cancer (PCa) represents the cause of the second highest number of cancer-related deaths worldwide, and its clinical presentation can range from slow-growing to rapidly spreading metastatic disease. As the characteristics of most cases of PCa remains incompletely understood, it is crucial to identify new biomarkers that can aid in early detection. Despite the prostate-specific antigen serum (PSA) levels, prostate biopsy, and imaging representing the actual gold-standard for diagnosing PCa, analyzing volatile organic compounds (VOCs) has emerged as a promising new frontier. We and other authors have reported that highly trained dogs can recognize specific VOCs associated with PCa with high accuracy. However, using dogs in clinical practice has several limitations. To exploit the potential of VOCs, an electronic nose (eNose) that mimics the dog olfactory system and can potentially be used in clinical practice was designed. To explore the eNose as an alternative to dogs in diagnosing PCa, we conducted a systematic literature review and meta-analysis of available studies. PRISMA guidelines were used for the identification, screening, eligibility, and selection process. We included six studies that employed trained dogs and found that the pooled diagnostic sensitivity was 0.87 (95% CI 0.86–0.89; I2, 98.6%), the diagnostic specificity was 0.83 (95% CI 0.80–0.85; I2, 98.1%), and the area under the summary receiver operating characteristic curve (sROC) was 0.64 (standard error, 0.25). We also analyzed five studies that used an eNose to diagnose PCa and found that the pooled diagnostic sensitivity was 0.84 (95% CI, 0.80–0.88; I2, 57.1%), the diagnostic specificity was 0.88 (95% CI, 0.84–0.91; I2, 66%), and the area under the sROC was 0.93 (standard error, 0.03). These pooled results suggest that while highly trained dogs have the potentiality to diagnose PCa, the ability is primarily related to olfactory physiology and training methodology. The adoption of advanced analytical techniques, such as eNose, poses a significant challenge in the field of clinical practice due to their growing effectiveness. Nevertheless, the presence of limitations and the requirement for meticulous study design continue to present challenges when employing eNoses for the diagnosis of PCa.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Carmen Bax
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, 20133 Milan, Italy
| | - Mohamed A. A. A. Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Beatrice Julia Lotesoriere
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, 20133 Milan, Italy
| | - Matteo Zanoni
- Department of Urology, Humanitas Mater Domini, 21100 Castellanza, Italy
| | - Paolo Vota
- Department of Urology, Humanitas Mater Domini, 21100 Castellanza, Italy
| | - Rodolfo Fausto Hurle
- Department of Urology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Nicolò Maria Buffi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Department of Urology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Massimo Lazzeri
- Department of Urology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Lorenzo Tidu
- Italian Ministry of Defenses, “Vittorio Veneto” Division, 50136 Firenze, Italy
| | - Laura Capelli
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, 20133 Milan, Italy
| | - Gianluigi Taverna
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Department of Urology, Humanitas Mater Domini, 21100 Castellanza, Italy
| |
Collapse
|
16
|
Jordaens S, Zwaenepoel K, Tjalma W, Deben C, Beyers K, Vankerckhoven V, Pauwels P, Vorsters A. Urine biomarkers in cancer detection: A systematic review of preanalytical parameters and applied methods. Int J Cancer 2023; 152:2186-2205. [PMID: 36647333 DOI: 10.1002/ijc.34434] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023]
Abstract
The aim of this review was to explore the status of urine sampling as a liquid biopsy for noninvasive cancer research by reviewing used preanalytical parameters and protocols. We searched two main health sciences databases, PubMed and Web of Science. From all eligible publications (2010-2022), information was extracted regarding: (a) study population characteristics, (b) cancer type, (c) urine preanalytics, (d) analyte class, (e) isolation method, (f) detection method, (g) comparator used, (h) biomarker type, (i) conclusion and (j) sensitivity and specificity. The search query identified 7835 records, of which 924 unique publications remained after screening the title, abstract and full text. Our analysis demonstrated that many publications did not report information about the preanalytical parameters of their urine samples, even though several other studies have shown the importance of standardization of sample handling. Interestingly, it was noted that urine is used for many cancer types and not just cancers originating from the urogenital tract. Many different types of relevant analytes have been shown to be found in urine. Additionally, future considerations and recommendations are discussed: (a) the heterogeneous nature of urine, (b) the need for standardized practice protocols and (c) the road toward the clinic. Urine is an emerging liquid biopsy with broad applicability in different analytes and several cancer types. However, standard practice protocols for sample handling and processing would help to elaborate the clinical utility of urine in cancer research, detection and disease monitoring.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Novosanis NV, Wijnegem, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Wiebren Tjalma
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Multidisciplinary Breast Clinic, Gynecological Oncology Unit, Department of Obstetrics and Gynecology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | | | - Vanessa Vankerckhoven
- Novosanis NV, Wijnegem, Belgium.,Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Alex Vorsters
- Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
17
|
Li Y, Yang K, He Z, Liu Z, Lu J, Zhao D, Zheng J, Qian MC. Can Electronic Nose Replace Human Nose?-An Investigation of E-Nose Sensor Responses to Volatile Compounds in Alcoholic Beverages. ACS OMEGA 2023; 8:16356-16363. [PMID: 37179643 PMCID: PMC10173318 DOI: 10.1021/acsomega.3c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Electronic nose (E-nose) technology is frequently attempted to simulate the human olfactory system to recognize complex odors. Metal oxide semiconductors (MOSs) are E-noses' most popular sensor materials. However, these sensor responses to different scents were poorly understood. This study investigated the characteristic responses of sensors to volatile compounds in a MOS-based E-nose platform, using baijiu as an evaluation system. The results showed that the sensor array had distinctive responses for different volatile compounds, and the response intensities varied depending on the sensors and the volatile compounds. Some sensors had dose-response relationships in a specific concentration range. Among all the volatiles investigated in this study, fatty acid esters had the greatest contribution to the overall sensor response of baijiu. Different aroma types of Chinese baijiu and different brands of strong aroma-type baijiu were successfully classified using the E-nose. This study provided an understanding of detailed MOS sensor response with volatile compounds, which could be further applied to improve the E-nose technology and its practical application in food and beverages.
Collapse
Affiliation(s)
- Yuzhu Li
- Flavor
Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644007, China
- Solid-State
Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, Sichuan 644007, China
- Key
Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China
National Light Industry, Yibin, Sichuan 644007, China
| | - Kangzhuo Yang
- Flavor
Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644007, China
- Solid-State
Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, Sichuan 644007, China
- Key
Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China
National Light Industry, Yibin, Sichuan 644007, China
| | - Zhanglan He
- Flavor
Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644007, China
- Solid-State
Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, Sichuan 644007, China
- Key
Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China
National Light Industry, Yibin, Sichuan 644007, China
| | - Zhipeng Liu
- Flavor
Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644007, China
- Solid-State
Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, Sichuan 644007, China
- Key
Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China
National Light Industry, Yibin, Sichuan 644007, China
| | - Jialing Lu
- Flavor
Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644007, China
- Solid-State
Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, Sichuan 644007, China
- Key
Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China
National Light Industry, Yibin, Sichuan 644007, China
| | - Dong Zhao
- Flavor
Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644007, China
- Solid-State
Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, Sichuan 644007, China
- Key
Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China
National Light Industry, Yibin, Sichuan 644007, China
| | - Jia Zheng
- Flavor
Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644007, China
- Solid-State
Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, Sichuan 644007, China
- Key
Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China
National Light Industry, Yibin, Sichuan 644007, China
| | - Michael C. Qian
- Department
of Food Science and Technology, Oregon State
University, Corvallis, Oregon 97331, United States
| |
Collapse
|
18
|
van Liere ELSA, van Dijk LJ, Bosch S, Vermeulen L, Heymans MW, Burchell GL, de Meij TGJ, Ramsoekh D, de Boer NKH. Urinary volatile organic compounds for colorectal cancer screening, a systematic review and meta-analysis. Eur J Cancer 2023; 186:69-82. [PMID: 37030079 DOI: 10.1016/j.ejca.2023.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND The faecal immunochemical test (FIT) suffers from suboptimal performance and participation in colorectal cancer (CRC) screening. Urinary volatile organic compounds (VOCs) may be a useful alternative. We aimed to determine the diagnostic potential of urinary VOCs for CRC/adenomas. By relating VOCs to known pathways, we aimed to gain insight into the pathophysiology of colorectal neoplasia. METHODS A systematic search was performed in PubMed, EMBASE and Web of Science. Original studies on urinary VOCs for CRC/adenoma detection with a control group were included. QUADAS-2 tool was used for quality assessment. Meta-analysis was performed by adopting a bivariate model for sensitivity/specificity. Fagan's nomogram estimated the performance of combined FIT-VOC. Neoplasm-associated VOCs were linked to pathways using the KEGG database. RESULTS Sixteen studies-involving 837 CRC patients and 1618 controls-were included; 11 performed chemical identification and 7 chemical fingerprinting. In all studies, urinary VOCs discriminated CRC from controls. Pooled sensitivity and specificity for CRC based on chemical fingerprinting were 84% (95% CI 73-91%) and 70% (95% CI 63-77%), respectively. The most distinctive individual VOC was butanal (AUC 0.98). The estimated probability of having CRC following negative FIT was 0.38%, whereas 0.09% following negative FIT-VOC. Combined FIT-VOC would detect 33% more CRCs. In total 100 CRC-associated urinary VOCs were identified; particularly hydrocarbons, carboxylic acids, aldehydes/ketones and amino acids, and predominantly involved in TCA-cycle or alanine/aspartate/glutamine/glutamate/phenylalanine/tyrosine/tryptophan metabolism, which is supported by previous research on (colorectal)cancer biology. The potential of urinary VOCs to detect precancerous adenomas or gain insight into their pathophysiology appeared understudied. CONCLUSION Urinary VOCs hold potential for non-invasive CRC screening. Multicentre validation studies are needed, especially focusing on adenoma detection. Urinary VOCs elucidate underlying pathophysiologic processes.
Collapse
Affiliation(s)
- Elsa L S A van Liere
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Vrije Universiteit, School of Medicine, Amsterdam, the Netherlands.
| | - Laura J van Dijk
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Vrije Universiteit, School of Medicine, Amsterdam, the Netherlands
| | - Sofie Bosch
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Centre for Experimental and Molecular Medicine, Amsterdam, the Netherlands; Cancer Centre Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Martijn W Heymans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam, the Netherlands
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tim G J de Meij
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Paediatric Gastroenterology, Amsterdam, the Netherlands
| | - Dewkoemar Ramsoekh
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Vrije Universiteit, School of Medicine, Amsterdam, the Netherlands
| | - Nanne K H de Boer
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Vrije Universiteit, School of Medicine, Amsterdam, the Netherlands
| |
Collapse
|
19
|
da Costa BRB, da Silva RR, Bigão VLCP, Peria FM, De Martinis BS. Hybrid volatilomics in cancer diagnosis by HS-GC-FID fingerprinting. J Breath Res 2023; 17. [PMID: 36634358 DOI: 10.1088/1752-7163/acb284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Assessing volatile organic compounds (VOCs) as cancer signatures is one of the most promising techniques toward developing non-invasive, simple, and affordable diagnosis. Here, we have evaluated the feasibility of employing static headspace extraction (HS) followed by gas chromatography with flame ionization detector (GC-FID) as a screening tool to discriminate between cancer patients (head and neck-HNC,n= 15; and gastrointestinal cancer-GIC,n= 19) and healthy controls (n= 37) on the basis of a non-target (fingerprinting) analysis of oral fluid and urine. We evaluated the discrimination considering a single bodily fluid and adopting the hybrid approach, in which the oral fluid and urinary VOCs profiles were combined through data fusion. We used supervised orthogonal partial least squares discriminant analysis for classification, and we assessed the prediction power of the models by analyzing the values of goodness of prediction (Q2Y), area under the curve (AUC), sensitivity, and specificity. The individual models HNC urine, HNC oral fluid, and GIC oral fluid successfully discriminated between healthy controls and positive samples (Q2Y = 0.560, 0.525, and 0.559; AUC = 0.814, 0.850, and 0.926; sensitivity = 84.8, 70.2, and 78.6%; and specificity = 82.3; 81.5; 87.5%, respectively), whereas GIC urine was not adequate (Q2Y = 0.292, AUC = 0.694, sensitivity = 66.1%, and specificity = 77.0%). Compared to the respective individual models, Q2Y for the hybrid models increased (0.623 for hybrid HNC and 0.562 for hybrid GIC). However, sensitivity was higher for HNC urine and GIC oral fluid than for hybrid HNC (75.6%) and hybrid GIC (69.8%), respectively. These results suggested that HS-GC-FID fingerprinting is suitable and holds great potential for cancer screening. Additionally, the hybrid approach tends to increase the predictive power if the individual models present suitable quality parameter values. Otherwise, it is more advantageous to use a single body fluid for analysis.
Collapse
Affiliation(s)
- Bruno Ruiz Brandão da Costa
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-903, Brazil
| | - Ricardo Roberto da Silva
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-903, Brazil
| | - Vítor Luiz Caleffo Piva Bigão
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-903, Brazil
| | - Fernanda Maris Peria
- Division of Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto CEP 14049-900, Brazil
| | - Bruno Spinosa De Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-901, Brazil
| |
Collapse
|
20
|
Systematic Review: Contribution of the Gut Microbiome to the Volatile Metabolic Fingerprint of Colorectal Neoplasia. Metabolites 2022; 13:metabo13010055. [PMID: 36676980 PMCID: PMC9865897 DOI: 10.3390/metabo13010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) has been associated with changes in volatile metabolic profiles in several human biological matrices. This enables its non-invasive detection, but the origin of these volatile organic compounds (VOCs) and their relation to the gut microbiome are not yet fully understood. This systematic review provides an overview of the current understanding of this topic. A systematic search using PubMed, Embase, Medline, Cochrane Library, and the Web of Science according to PRISMA guidelines resulted in seventy-one included studies. In addition, a systematic search was conducted that identified five systematic reviews from which CRC-associated gut microbiota data were extracted. The included studies analyzed VOCs in feces, urine, breath, blood, tissue, and saliva. Eight studies performed microbiota analysis in addition to VOC analysis. The most frequently reported dysregulations over all matrices included short-chain fatty acids, amino acids, proteolytic fermentation products, and products related to the tricarboxylic acid cycle and Warburg metabolism. Many of these dysregulations could be related to the shifts in CRC-associated microbiota, and thus the gut microbiota presumably contributes to the metabolic fingerprint of VOC in CRC. Future research involving VOCs analysis should include simultaneous gut microbiota analysis.
Collapse
|
21
|
Llambrich M, Brezmes J, Cumeras R. The untargeted urine volatilome for biomedical applications: methodology and volatilome database. Biol Proced Online 2022; 24:20. [PMID: 36456991 PMCID: PMC9714113 DOI: 10.1186/s12575-022-00184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Chemically diverse in compounds, urine can give us an insight into metabolic breakdown products from foods, drinks, drugs, environmental contaminants, endogenous waste metabolites, and bacterial by-products. Hundreds of them are volatile compounds; however, their composition has never been provided in detail, nor has the methodology used for urine volatilome untargeted analysis. Here, we summarize key elements for the untargeted analysis of urine volatilome from a comprehensive compilation of literature, including the latest reports published. Current achievements and limitations on each process step are discussed and compared. 34 studies were found retrieving all information from the urine treatment to the final results obtained. In this report, we provide the first specific urine volatilome database, consisting of 841 compounds from 80 different chemical classes.
Collapse
Affiliation(s)
- Maria Llambrich
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Jesús Brezmes
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Raquel Cumeras
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
- Oncology Department, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| |
Collapse
|
22
|
Sedighi-Maman Z, Heath JJ. An Interpretable Two-Phase Modeling Approach for Lung Cancer Survivability Prediction. SENSORS (BASEL, SWITZERLAND) 2022; 22:6783. [PMID: 36146145 PMCID: PMC9503480 DOI: 10.3390/s22186783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Although lung cancer survival status and survival length predictions have primarily been studied individually, a scheme that leverages both fields in an interpretable way for physicians remains elusive. We propose a two-phase data analytic framework that is capable of classifying survival status for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year time-points (phase I) and predicting the number of survival months within 3 years (phase II) using recent Surveillance, Epidemiology, and End Results data from 2010 to 2017. In this study, we employ three analytical models (general linear model, extreme gradient boosting, and artificial neural networks), five data balancing techniques (synthetic minority oversampling technique (SMOTE), relocating safe level SMOTE, borderline SMOTE, adaptive synthetic sampling, and majority weighted minority oversampling technique), two feature selection methods (least absolute shrinkage and selection operator (LASSO) and random forest), and the one-hot encoding approach. By implementing a comprehensive data preparation phase, we demonstrate that a computationally efficient and interpretable method such as GLM performs comparably to more complex models. Moreover, we quantify the effects of individual features in phase I and II by exploiting GLM coefficients. To the best of our knowledge, this study is the first to (a) implement a comprehensive data processing approach to develop performant, computationally efficient, and interpretable methods in comparison to black-box models, (b) visualize top factors impacting survival odds by utilizing the change in odds ratio, and (c) comprehensively explore short-term lung cancer survival using a two-phase approach.
Collapse
Affiliation(s)
- Zahra Sedighi-Maman
- Robert B. Willumstad School of Business, Adelphi University, Garden City, NY 11530, USA
| | - Jonathan J. Heath
- McDonough School of Business, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
23
|
State of the Art in Smart Portable, Wearable, Ingestible and Implantable Devices for Health Status Monitoring and Disease Management. SENSORS 2022; 22:s22114228. [PMID: 35684847 PMCID: PMC9185336 DOI: 10.3390/s22114228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023]
Abstract
Several illnesses that are chronic and acute are becoming more relevant as the world's aging population expands, and the medical sector is transforming rapidly, as a consequence of which the need for "point-of-care" (POC), identification/detection, and real time management of health issues that have been required for a long time are increasing. Biomarkers are biological markers that help to detect status of health or disease. Biosensors' applications are for screening for early detection, chronic disease treatment, health management, and well-being surveillance. Smart devices that allow continual monitoring of vital biomarkers for physiological health monitoring, medical diagnosis, and assessment are becoming increasingly widespread in a variety of applications, ranging from biomedical to healthcare systems of surveillance and monitoring. The term "smart" is used due to the ability of these devices to extract data with intelligence and in real time. Wearable, implantable, ingestible, and portable devices can all be considered smart devices; this is due to their ability of smart interpretation of data, through their smart sensors or biosensors and indicators. Wearable and portable devices have progressed more and more in the shape of various accessories, integrated clothes, and body attachments and inserts. Moreover, implantable and ingestible devices allow for the medical diagnosis and treatment of patients using tiny sensors and biomedical gadgets or devices have become available, thus increasing the quality and efficacy of medical treatments by a significant margin. This article summarizes the state of the art in portable, wearable, ingestible, and implantable devices for health status monitoring and disease management and their possible applications. It also identifies some new technologies that have the potential to contribute to the development of personalized care. Further, these devices are non-invasive in nature, providing information with accuracy and in given time, thus making these devices important for the future use of humanity.
Collapse
|
24
|
Bradley C, Hee SW, Andronis L, Persaud K, Hull MA, Todd J, Taylor-Phillips S, Smith S, Constable R, Waugh N, Arasaradnam RP. REducing Colonoscopies in patients without significant bowEl DiseasE: the RECEDE Study - protocol for a prospective diagnostic accuracy study. BMJ Open 2022; 12:e058559. [PMID: 35354626 PMCID: PMC8968545 DOI: 10.1136/bmjopen-2021-058559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Demand for colonoscopies and CT colonography (CTC) is exceeding capacity in National Health Service Trusts. In many patients colonoscopies and CTCs show no significant bowel disease (SBD). Faecal Immunochemical Testing (FIT) is being introduced to prioritise patients for colonoscopies but is insufficient to identify non-SBD patients meaning colonoscopy and CTC demand remains high. The REducing Colonoscopies in patients without significant bowEl DiseasE (RECEDE) study aims to test urine volatile organic compound (VOC) analysis alongside FIT to improve detection of SBD and to reduce the number of colonoscopies and CTCs. METHODS AND ANALYSIS This is a multicentre, prospective diagnostic accuracy study evaluating whether stool FIT plus urine VOC compared with stool FIT alone improves detection of SBD in patients referred for colonoscopy or CTC due to persistent lower gastrointestinal symptoms. To ensure SBD is not missed, the dual test requires a high sensitivity, set at 97% with 95% CI width of 5%. Our assumption is that to achieve this sensitivity requires 200 participants with SBD. Further assuming 19% of all participants will have SBD and 55% of all participants will return both stool and urine samples we will recruit 1915 participants. The thresholds for FIT and VOC results diagnosing SBD have been pre-set. If either FIT or VOC exceeds the respective threshold, the participant will be classed as having suspected SBD. As an exploratory analysis we will be testing different thresholds. The reference comparator will be a complete colonoscopy or CTC. Secondary outcomes will look at optimising the FIT and VOC thresholds for SBD detection. An economic evaluation, using a denovo decision analytic model, will be carried out determine the costs, benefits and overall cost-effectiveness of FIT +VOC vs FIT followed by colonoscopy. ETHICS AND DISSEMINATION Ethical approval was obtained by Liverpool Central Research Ethics Committee (20/NW/0346). TRIAL REGISTRATION NUMBER RECEDE is registered on Clinicaltrials.gov NCT04516785 & ISRCTN14982373. This protocol was written and published before results of the trial were available.
Collapse
Affiliation(s)
- Christopher Bradley
- Research & Development, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Siew Wan Hee
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| | - Lazaros Andronis
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| | - Krishna Persaud
- Department of Chemical Engineering, The University of Manchester, Manchester, UK
| | - Mark A Hull
- School of Medicine, University of Leeds, Leeds, UK
| | - John Todd
- Research & Development, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Steve Smith
- Research & Development, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Bowel Cancer Screening Hub, NW Bowel Cancer Screening Hub, Hospital of St. Cross, Rugby, UK
| | - Rachel Constable
- Research & Development, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Norman Waugh
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| | - Ramesh P Arasaradnam
- Research & Development, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
25
|
Abstract
The technological developments of recent times have allowed the use of innovative approaches to support the diagnosis of various diseases. Many of such clinical conditions are often associated with metabolic unbalance, in turn producing an alteration of the gut microbiota even during asymptomatic stages. As such, studies regarding the microbiota composition in biological fluids obtained by humans are continuously growing, and the methodologies for their investigation are rapidly changing, making it less invasive and more affordable. To this extent, Electronic Nose and Electronic Tongue tools are gaining importance in the relevant field, making them a useful alternative—or support—to traditional analytical methods. In light of this, the present manuscript seeks to investigate the development and use of such tools in the gut microbiota assessment according to the current literature. Significant gaps are still present, particularly concerning the Electronic Tongue systems, however the current evidence highlights the strong potential such tools own to enter the daily clinical practice, with significant advancement concerning the patients’ acceptability and cost saving for healthcare providers.
Collapse
|
26
|
Cova CM, Rincón E, Espinosa E, Serrano L, Zuliani A. Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs). BIOSENSORS 2022; 12:51. [PMID: 35200311 PMCID: PMC8869180 DOI: 10.3390/bios12020051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 05/06/2023]
Abstract
The efficient and selective detection of volatile organic compounds (VOCs) provides key information for various purposes ranging from the toxicological analysis of indoor/outdoor environments to the diagnosis of diseases or to the investigation of biological processes. In the last decade, different sensors and biosensors providing reliable, rapid, and economic responses in the detection of VOCs have been successfully conceived and applied in numerous practical cases; however, the global necessity of a sustainable development, has driven the design of devices for the detection of VOCs to greener methods. In this review, the most recent and innovative VOC sensors and biosensors with sustainable features are presented. The sensors are grouped into three of the main industrial sectors of daily life, including environmental analysis, highly important for toxicity issues, food packaging tools, especially aimed at avoiding the spoilage of meat and fish, and the diagnosis of diseases, crucial for the early detection of relevant pathological conditions such as cancer and diabetes. The research outcomes presented in the review underly the necessity of preparing sensors with higher efficiency, lower detection limits, improved selectivity, and enhanced sustainable characteristics to fully address the sustainable manufacturing of VOC sensors and biosensors.
Collapse
Affiliation(s)
- Camilla Maria Cova
- Department of Chemistry, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy;
| | - Esther Rincón
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Eduardo Espinosa
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Luis Serrano
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Alessio Zuliani
- Department of Chemistry, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy;
| |
Collapse
|