1
|
Kang Y, Choi S, Koo C, Joung Y. Development and Optimization of Silicon-Dioxide-Coated Capacitive Electrode for Ambulatory ECG Measurement System. SENSORS (BASEL, SWITZERLAND) 2022; 22:8388. [PMID: 36366085 PMCID: PMC9656767 DOI: 10.3390/s22218388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
This paper presents a silicon-dioxide-coated capacitive electrode system for an ambulatory electrocardiogram (ECG). The electrode was coated with a nano-leveled (287 nm) silicon dioxide layer which has a very high resistance of over 200 MΩ. Due to this high resistance, the electrode can be defined as only a capacitor without a resistive characteristic. This distinct capacitive characteristic of the electrode brings a simplified circuit analysis to achieve the development of a high-quality ambulatory ECG system. The 240 um thickness electrode was composed of a stainless-steel sheet layer for sensing, a polyimide electrical insulation layer, and a copper sheet connected with the ground to block any electrical noises generated from the back side of the structure. Six different diameter electrodes were prepared to optimize ECG signals in ambulatory environment, such as the amplitude of the QRS complex, amplitude of electromagnetic interference (EMI), and baseline wandering of the ECG signals. By combining the experimental results, optimal ambulatory ECG signals were obtained with electrodes that have a diameter from 1 to 3 cm. Moreover, we achieved high-quality ECG signals in a sweating simulation environment with 2 cm electrodes.
Collapse
|
2
|
Graphene-Based Flexible Electrode for Electrocardiogram Signal Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the rapidly aging society and increased concern for personal cardiovascular health, novel, flexible electrodes suitable for electrocardiogram (ECG) signal monitoring are in demand. Based on the excellent electrical and mechanical properties of graphene and the rapid development of graphene device fabrication technologies, graphene-based ECG electrodes have recently attracted much attention, and many flexible graphene electrodes with excellent performance have been developed. To understand the current research progress of graphene-based ECG electrodes and help researchers clarify current development conditions and directions, we systematically review the recent advances in graphene-based flexible ECG electrodes. Graphene electrodes are classified as bionic, fabric-based, biodegradable, laser-induced/scribed, modified-graphene, sponge-like, invasive, etc., based on their design concept, structural characteristics, preparation methods, and material properties. Moreover, some categories are further divided into dry or wet electrodes. Then, their performance, including electrode–skin impedance, signal-to-noise ratio, skin compatibility, and stability, is analyzed. Finally, we discuss possible development directions of graphene ECG electrodes and share our views.
Collapse
|
3
|
Wang M, Xu Y, Wang S, Zhao T, Cai H, Wang Y, Zou R, Wang C. Predictive value of electrocardiographic markers in children with dilated cardiomyopathy. Front Pediatr 2022; 10:917730. [PMID: 36081634 PMCID: PMC9445218 DOI: 10.3389/fped.2022.917730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) refers to a heterogeneous group of cardiomyopathies characterized by ventricular dilatation and myocardial systolic dysfunction, which can lead to serious consequences such as malign arrhythmia, sudden death, heart failure, and thromboembolism. With its economical, non-invasive, simple and reproducible advantages, electrocardiogram (ECG) has become an important indicator for assessing the prognosis of cardiovascular diseases. In recent years, more and more studies of electrocardiography on DCM have been carried out, but there is still a lack of a comprehensive summary of its prognostic value. This article reviews the prognostic value of electrocardiographic markers in children with DCM.
Collapse
Affiliation(s)
- Miao Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xu
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Wang
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zhao
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Cai
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Runmei Zou
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|